
Data Analysis for the Bo TPC
This report concerns the analysis of data from the Bo TPC instrument,

which is under development as a test bed for electronics for liquid argon
TPCs.

The Bo TPC contains three wire arrays, each made up of 48 wires. Array
B is rotated by 60 degrees with respect to array A, while array C is rotated
by π

3
in the opposite direction. 2048 readings, separated by intervals of

198 nanoseconds, are taken on each wire for each event. This allows us to
produce plots of the signal for each array, as shown in figures 1a), 1b) and
1c). To create these plots from raw data (adc counts), we first subtract
400 (to compensate for the offset of 400 in the data)and divide by 10, then
plot the data for each wire centred around the appropriate wire number.
Notice that the signal shape varies between the arrays: for instance, in this
particular counter orientation, the signal on array B is poor because the
muon is travelling parallel to those wires.

Fig. 1a)
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Fig. 1b)

Fig. 1c)

We considered six different aspects of the data collection process:

1) Establishing a parameter for the signal/noise ratio.

2) Source of noise.

3) Normalising the data to compensate for the effect of muon path angle
on signal strength.
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4) Establishing a value for the electron drift speed in the liquid argon.

5) Establishing a value for the purity of the liquid argon used in the
instrument.

6) Automating the process of selecting events which show a clear single
muon path.

1 Signal/noise ratio
We used two different approaches to this calculation.

1) Integrating numerically over the signal, then integrating over a window
of equal width containing only noise, and dividing the first value by the
second. 400 is subtracted from the signal values before integration, to give
a signal centred about zero, and we use absolute values for all data so the
results are not affected by the negative sign on some readings.

2) Finding the peak height of the signal, then dividing this by the RMS
value of the noise.

We found method 1) to be problematic because the window containing
the signal normally contains less than 50 readings. Therefore if we select a
window of equal size containing only noise and integrate over it, the analysis
often produces values for the noise which are higher or lower than the true
average simply because our randomly selected window contains a period of
higher or lower noise than usual. We therefore preferred method 2.

1.1 RMS noise window

For this method it was necessary to decide how many readings to use
to use in order to calculate the RMS noise. The following graphs show the
value calculated for RMS noise for various different choices of the number of
readings. Notice that the RMS noise is always calculated over a window that
does not contain the signal.
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Fig. 2

Fig. 3a)
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Fig. 3b)

The error bars are calculated using the formula:

e =
S√
R

where S is the spread of values within the bin (the maximum value minus
the minimum value), and R is the number of values in the bin (always 18 in
this case).

The RMS is calculated using the formula:

RMS =

√
ΣN
i=1(xi − 400)2

N

where xi are the readings in the relevant interval, and N is the number
of readings.

Notice that 400 is subtracted to compensate for the offset of 400 in the
raw data.

A comparison of figure 2 with figures 3a) and 3b) demonstrates that the
results for RMS noise have significantly wider spread, are considerably larger,
and do not stabilise so consistently, when data is taken from outlying results
for an event which contained a signal rather than from results from an event
which did not contain a signal. It was therefore decided that the calculation
of RMS noise should always be made using data from no-signal events. It
can also be seen from figure 2 that the RMS noise result stabilises once
the window is about 300 readings wide. This suggests that an appropriate
window sampling size is about 400 readings, taken from a no-signal event.
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1.2 Additional noise on signal events

In order to establish the reason for the increased noise on signal events,
we compared the values for RMS noise before and after the signal. If the
RMS noise were roughly equal in both cases, this would suggest that the
extra noise is coming from the increased number of excitations due to extra
particles (such as photons) resulting from the presence of the muon; but if
the RMS noise were greater after the signal, this would suggest that the extra
noise results from the fact that the electronics take some time to return to
equilibrium after the signal.

The graph in figure 4) shows that the RMS noise is significantly greater
immediately after the signal (which in this case occurs between reading 400
and reading 500), and only gradually decreases back to its original size. The
table that follows indicates that this result is true for a range of different wires
- values in this table are calculated from intervals of width 100 readings, with
one interval directly before the signal and the other directly after.

We therefore conclude that the increased noise on signal events is a con-
sequence of the time taken for the electronics to return to equilibrium after
a signal.

Fig. 4
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Array Wire RMS noise before signal RMS noise after signal
A 10 0.22 0.86
A 20 0.55 0.96
A 30 0.61 0.73
C 10 0.47 1.10
C 20 0.56 0.99
C 30 0.41 0.83

2 Source of noise
In order to further understand of the source of noise (including noise on

non-signal events, which cannot be explained as the response of the electron-
ics to the signal), we carried out analysis to determine whether the noise on
different wires is coherent.

We first averaged the values in each time bin over the given range of wires,
then took the RMS of these averages (A). We then calculated the RMS for
each wire separately and averaged these results (B). If the variation on the
wires is statistically independent, we expect

A =
B√
W

where W is the number of wires used in the calculation.
The results of this analysis are summarised below. The values given are

averages over eight different events, using wires 10-20 on each array, and
taking the RMS over a window of size 300 readings.

Array A B B√
W

Ratio A
√
W
B

A 0.54 0.2 0.16 1.24
B 0.55 0.19 0.17 1.15
C 0.58 0.23 0.17 1.34
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Fig. 5

Figure 5 shows the ratio for each of the three arrays. The error bars here
simply range from the highest value obtained to the lowest value obtained.

It can be seen that in all cases, the final ratio is slightly greater than
one. This indicates that there is some small correlation of the noise on the
wires, which implies that there is a minor external source of noise such as
the amplifer power source.

3 Normalisation
By considering the projection of the muon path on the wireplane, we see

that the strength of the signal received from a given muon depends on the
angle of the muon path in a way given by:

T

sin(φ)sin(θ)

where T is the true signal strength, φ is the azimuthal angle of the muon
path (relative to the direction of the wires in the array under consideration)
and θ is the polar angle of the muon path.

Therefore we would like to normalise the data by multiplying each result
by the factor sin(φ)sin(θ).

The angles for the muon path can be calculated by comparing the slopes
of the muon tracks across plots similar to figures 1a), 1b) and 1c).
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3.1 Slope calculation: first analysis

The value of the slope obtained for the muon path varies by about 10%
depending on whether the best fit line approximating that path is fitted to
maxima, minima or to the midpoints. We compared each of these three
methods by calculating the chi-square value as well as the RMS value of the
difference between the line and the actual data for each kind of line over a
range of different events.

Notice that for the purpose of these tests, we defined the midpoint as the
point when the data first passes through 400 after the maximum (recall that
the minimum always occurs after the maximum).

For the line passing through the maxima, the RMS is calculated using
the formula:

RMS =

√
ΣN
i=1(xi − f−1(yi))2

N

The sum is taken over all the wires in the array. (xi, yi) are the coordinates
of the maximum point for wire i on a plot similar to those shown in figure
1a)-c), so that x has units of number of readings, and y has units of wire
number. (Note, however, that y need not be an integer, as it is taken from
the data which has been centered around the appropriate wire number). f(x)
is the function representing the best fit line, so that the inverse f−1(yi) gives
the x value on that line corresponding to the y value of the maximum for
wire i.

For the line passing through the minima, the calculation is similar, but
we substitute the minimum point for the maximum point.

For the line passing through midpoint, the calculation is similar, but we
substitute the midpoint as defined above for the maximum point.

We tested 25 different run-array combinations - notice however that tests
involving array C left out the minimum line, because C is the collector plate
and therefore does not show a minimum. The table below shows the av-
erage ratios between the RMS and Chi2 values obtained for the maximum,
minimum and midpoint best fit lines. The graphs in Fig 6a) and 6b) show
the RMS and Chi2 values for each of the tests, normalised to the midpoint
value (in order to compensate for fluctuations arising from different signal
strengths.
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RMS Chi2
Maximum:midpoint 1.15 5.83
Maximum:minimum 0.4 1.02
Minimum:midpoint 3.17 8.77

Fig. 6a)
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Fig. 6b)

These results suggest that a best fit line passing through the midpoint is
most appropriate. The fit through the maxima appears slightly better than
the fit through the minima, but this may be bias arising from the fact that
the sampling size for lines through minima was smaller.

3.2 Slope calculation: second analysis

We considered a more precise fitting technique in order to improve the fit
of the lines passing through the maxima and minima. We selected a window
around each maximum, extending on each side of it until the point where the
values decreased back down to one third of the maximum value. We then
fitted a third degree polynomial to the data points (given by adccounts−400

10
)

falling within this window. The maximum value of this function was then
substituted for our original maximum value. A similar procedure was applied
to the the minima. A plot of one such polynomial appears below:

Emily Adlam, August 2011, Fermilab 11



Fig. 7)

The following table shows the average ratios between the RMS and Chi2
values obtained for the original lines and the new lines.

RMS Chi2
Original maximum line: new maximum line 1.09 2.04
Original minimum line : new minimum line 4.51 1.46
Original midpoint line: new maximum line 0.75 0.13
Original midpoint line: new minimum line 0.57 0.08

These ratios show that this new technique has indeed given a better fit
than the original versions of the lines passing through maxima and minima.
However, even with this improved technique, the line passing through the
midpoints still gives the best overall fit to the data.

3.3 Angle calculation

The azimuthal angle can be calculated using the slopes from any two
planes. The slopes are used to find the time between readings on two consec-
utive readings: for slope m, the time between readings is ti = 198×10−9

mi
where

the numerical factor simply converts to correct units.
As an example, the derivation of the formula for the azimuthal angle

using data from arrays A and B is as follows.
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The rate of procession of the signal in array A is given by v = w
tAcos(φ)

and since array B is rotated by π
3

with respect to array A, the rate in array
B is v = w

tBcos(φ+
π
3
)
, where w is the spacing between the wires (0.004695), tA

is the time between readings on adjacent wires in array A, and tB is the time
between readings on adjacent wires in array B.

Assuming that the velocity of the electron cloud between arrays A and B
is always the same, these two rates are equal, so we can equate the right hand
sides of our equations and rearrange to obtain sin(φ)(2tA−tB) =

√
3tBcos(φ).

Further rearrangement yields

φ = tan−1(

√
3t2

2t1 − t2
)

where φ is measured relative to the direction parallel to the wires.
Alternatively, we can leave the expression in terms of slopes (the numer-

ical factor 198× 10−9 will cancel):

φ = tan−1(

√
3

m2

2
m1
− 1

m2

)

Similar calculations yield formulae for other combinations of arrays:

φ = tan−1(

√
3t3

2t1 + t3
)

φ = tan−1(

√
3t3

2t2 + t3
)− π

3

Notice that this produces the azimuthal angle relative to the A plane: we
add π

3
to get the correct angle for the B plane, and subtract π

3
to get the

correct angle for the C plane.

The slopes can also be used to obtain the polar angle. The value v
calculated above should equal vd.tan(θ) where vd is the electron drift speed
(1500 ms−1). Substituting one of the formulae for v and rearranging, we
obtain the result:

θ = tan−1(
w

sin(φ)vdt1
)

3.4 Evaluating the normalisation
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The graphs that follow give a qualitative picture of how the data are
affected by the normalisation. They are histograms showing the relative
frequency of different values for the maximum reading on the signal (obtained
from the polynomial fitted to the maximum, as in section 3.2) before and after
normalisation, for an arbitrarily selected set of wires. Notice that wires near
the start and end of the range are excluded, because they tend to show more
erratic results.

Fig. 8a)
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Fig. 8b)
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Fig. 8c)

Emily Adlam, August 2011, Fermilab 16



Fig. 8d)

We calculated the uncertainty on the normalisation factor over a range
of events in order to determine the precision of our normalisation process.
These uncertainties were calculated assuming that the uncertainty on the
wire spacing is 0.0000005 m and the uncertainty on the electron drift velocity
is 50 ms−1. However, an uncertainty of 0.0000005 on the wire spacing is for
an ideal case; in fact the uncertainty may be significantly greater, meaning
that these uncertainties may be underestimates.

Event Uncertainty on normalisation factor
Run 202, event 6 0.0000113
Run 202, event 8 0.0005090
Run 202, event 16 0.0000283
Run 202, event 24 0.0000767
Run 202, event 29 0.0004480
Run 202, event 32 0.0000053
Run 202, event 36 0.0014000
Run 202, event 41 0.0000460
Run 202, event 43 0.0180000
Run 202, event 49 0.0001840

Average 0.0020711

The fact that the uncertainties on the normalisation are small indicates
that we are achieving reasonable precision in this process.
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If the normalisation is working correctly, we would expect to see that
the strength of the correlation between signal and azimuthal or polar angle
decreases after the data has been normalised. As a preliminary check on
whether this might be the case, compare the graphs in figures 9a) to 9d).
At least for this randomly selected data, we see that the upward/downward
trends are less apparent after normalisation. It is a positive sign that in
both cases the magnitude of the slope for the best fit line is smaller after
normalisation, since we would expect zero slope if there is no correlation
between signal and angle.

Fig. 9a)
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Fig. 9b)

Fig. 9c)
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Fig. 9d)

4 Drift Velocity
As muons pass through liquid argon, they ionise particles and produce

electrons, which are detected on arrival at the wireplanes. It is essentialuseful
to have an estimate for the drift velocity of these electrons, because the drift
time is used to establish the position and transverse geometry of events. The
drift velocity is also useful to give an indication of the strength of the electric
field being applied. In order to obtain such an estimate, we carried out two
consecutive runs with the counters at different vertical heights. When the
counters are moved down, the electrons take a longer time to get to the array,
and therefore for any given wire, the average time for the maximum reading
will be shifted to the right. We assume that the angular distribution is the
same for all vertical heights; this assumption is valid provided that there is
nothing in the immediate surroundings which blocks a significant proportion
of muons.

4.1 Number of readings: first analysis

To establish how many readings we would need to perform this calcu-
lation to the appropriate degree of accuracy, we carried out a preliminary
analysis on two short runs, each having eight readings, with the counters at
different vertical heights. The table below shows the results on these two
runs (results are in multiples of 198 nanoseconds, which is the time between
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two consecutive readings). Notice that there is a clear shift in the average
position of the maximum reading between the two runs.

207 A 207 B 207 C 208 A 208 B 208 C
Average max position 995.63 707.75 1158.63 424.13 592.25 476.75

RMS 130.05 543.76 118.94 118.65 253.96 167.89
Uncertainty 45.98 192.25 42.05 41.95 89.76 59.36

The average change in time from the results for the A and C planes
is 1.24 × 10−4 seconds (data from array B has been omitted, because the
results for the B plane are poor for this orientation). The counters were
moved through a vertical height of 16.5 cm between these two runs. Thus we
calculate a drift velocity of approximately 1330 ms−1. However this result is
very approximate, given that it is based on so few readings.

Figure 8 shows the uncertainty versus the number of readings for three
sets of data - two from array A and one from array C. Polynomials have been
fitted to this data to give an idea of the trend.

Fig. 10)

Notice that the equations for the best fit lines suggest that the uncer-
tainty is approximately proportional to the number of readings to the power
of negative half, which is what we expect from standard statistical results.
Using these equations, we can extrapolate to predict the number of events
that would be required to achieve an uncertainty for each average maximum
position of less than 10 counts (1.98 microseconds):
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Predicted number of events
Run 207, Array A 64
Run 207, Array C 71
Run 208, Array A 43

Average 59.06

In general, roughly half of the events recorded are good events which can
be used in a calculation of this kind. Therefore we will need to record at
least 120 events in order to produce results with an error of less than 1.98
microseconds.

The change in height of the counter has an estimated error of 0.4 cm.
Using standard error propagation methods, we find that if this error were
combined with an error of 1.98 microseconds on each time measurement, the
overall error would be about 3%, or 40 ms−1 for a result of 1330 ms−1.

4.2 Number of readings: second analysis

To improve accuracy, we considered a second method of establishing the
change in time: plot graphs of signal time vs polar angle for a single wire,
fit a line to the data, and compare the y intercepts for such graphs over the
two different runs. We hoped this method would help eliminate some of the
variation that arises from different tracks having different polar angles. An
example of such a plot is shown in figure 11.
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Fig. 11)

We initially found that the uncertainty on the y intercepts was too large
for these results to be useful; moreoever, because the uncertainty tends
asymptotically towards a value of about 400 counts (80 microseconds) as
shown in figure 11, this method would not produce useful results even were
we to take many more readings.

Emily Adlam, August 2011, Fermilab 23



Fig. 12)

However, this result can be significantly improved if, instead of fitting the
line directly to the data, we fit to x values with the average angle (in this
case 1.103 radians) subtracted. As shown in figure 12, the uncertainty on
the y intercept now tends asymptotically towards a value of about 25 counts
(4 microseconds), which would give us an overall uncertainty of about 9%,
or 117 ms−1 for a result of 1330 ms−1.
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Fig. 13)

This figure suggests we need about twelve good events in order to min-
imise the uncertainty. The prelimary runs available to us had about eight
good events. When this method is applied to this data, we obtain a result
of 1400 ± 300 ms−1 - the uncertainty is still a little too large for the result
to be useful. In order to minimise the uncertainty, we carried out this pro-
cedure over a number of different wires and averaged the results. Applying
this strategy to seven wires produced an average drift velocity value of 1400
± 100 ms−1, as shown in the table below.

Wire Drift velocity Error
10 1451.0 289.8
16 1454.6 301.1
20 1443.0 298.1
24 1410.0 276.3
28 1416.0 287.4
30 1403.4 283.9
35 1382.0 276.1

Average 1422.87 108.7

However, it might at first seem that there could be a circularity in this
reasoning: we need to assume a value of drift velocity in order to calculate
the polar angle, which is then used to calculate a value of the drift velocity.
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In order to ascertain the influence of the initial assumption on the final value,
we plotted the output drift velocity against the input drift velocity.

Fig. 14)

This plot was made by averaging the drift velocity obtained from a given
input value of drift velocity over eight different events. It shows that the
input and output values for drift velocity are approximately equal at a point
between 1400 and 1500 ms−1, which suggests that the true value for drift
velocity lies somewhere in that range.

5 Purity Measurement
For any liquid argon TPC it is important to monitor the purity of the

liquid argon. Electronegative impurities will reduce the number of electrons
which arrive at the wire arrays in the signal, thus reducing and potentially
obliterating the signal.

In order to measure the purity of the liquid argon used in these experi-
ments, two sets of data were taken, with the positions of the counters inverted
between them. The inversion changes the average distance travelled by the
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electrons to arrive at any particular wire, and this is reflected by a change in
the average time of the signal on each wire. The further the electrons have
to travel through the argon, the greater the proportion of electrons that will
be lost through interactions with impurities. Therefore a comparison of the
change in the signal strength with the change in the time of the signal should
yield some indication of the purity of the argon: the more contaminated the
argon, the higher the degree of correlation between these quantities.

Fig. 15)

Figure 15) shows a graph of the change in average signal strength versus
the change in average signal time, averaging over six events on eight different
wires (each point represents a different wire). The error bars are calculated
using the formula:

σ =
RMS√
N

where the RMS is the characteristic RMS for the signal strength on that
particular wire, and N is the number of readings used to find the average (6
in this case).

The gradient of the best fit line on this graph represents the change in the
signal strength (in units of [adc counts]/10) per distance travelled through
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the argon (in units of m). Observe that the uncertainty on the gradient is
large, so that zero falls within its range. Therefore this data does not provide
good statistical evidence in support of any diminution in the signal strength,
or correspondingly any impurity in the argon.

If the argon were completely pure, we would expect 95% of experiments
to measure a change in average signal strength which is within 2σ of zero,
where σ is the standard deviation, given by the formula above. Therefore
we can conclude only that the true change in signal strength on each wire is
less than 2σ. The table below shows, for each wire tested, the value of 2σ,
the change in average time (in units of 198 ns), and the upper limit on the
change in signal per unit distance travelled through the argon (in units of
[adc counts]/10 per m) calculated from those values of change in time and
2σ. This gives an indication of the degree of sensitivity of this test - any
impurity in the argon must be such as to produce a change in signal per unit
distance which is of the order of the values given in this table, or smaller.

Wire Change in average time (x 198 ns) 2σ Upper limit on attenuation constant
106 65.72 0.27 14.7
109 112.24 0.35 11.34
111 159.65 0.49 11.14
116 256.21 0.20 2.85
119 314.57 0.29 3.37
119 314.57 0.29 3.37
121 349.3 0.32 3.54
125 432.95 0.28 2.30
126 451.37 0.21 1.67

We could increase the sensitivity of this analysis by obtaining more data
so that we could take averages over a larger number of events. This would
decrease 2σ and thus decrease the upper limit for the change in signal per
unit distance. To give an idea of the changes in sensitivity, figures 16a), 16b)
and 16c) show how the values of 2σ vary with the number of events used to
calculate the average.
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Fig. 16a)

Fig. 16b)

Emily Adlam, August 2011, Fermilab 29



Fig. 16c)

Notice that not all wires are included on these plots. This is because wires
at the outer edges of the arrays often fail to show any signal, and therefore
we cannot calculate the RMS for these wires.

6 Automating Event Selection
About half of the events recorded by the Bo TPC are unsuitable for

purposes such as finding the angle of a muon’s path. The figures below show
several events which cannot be used in this way. Figure 17a) shows an event
where no muon passes through, figure 17b) shows an event where the muon
gives off a second particle, and figure 17c) shows an event with a shower of
particles rather than a single muon.
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Fig. 17a)
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Fig. 17b)

Fig. 17c)

It is possible to decide which events can be used by inspecting them by
eye, but the process is lengthy. Therefore we developed a program which
selects events automatically. The program carries out two checks on the
data:

1)Test whether there is more than one maximum (i.e. is there more than
one distinct string of data containing values greater than 406). Events having
two or more such maxima are labelled bad.

2)Find the distance between the midpoint (the point where the data
crosses the 400 line, between the maximum and minimum reading) and the
corresponding position on the best fit line. Events where this distance is
greater than 20 are labelled bad.

Events which pass both tests are labelled good.

6.1 Evaluation of program

In order to establish that the program was working properly, we compared
the decisions made by the progam with the comments made by a human in-
specting the relevant events by eye. The results are in agreement in most
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clear cases: here, 9 out of 46 events are labelled bad by both the program
and human, and 19 out of 46 are labelled good by both program and human.
In the remaining borderline cases, viewing the plot by eye does not yield a
definite good or bad verdict, and in such cases the program gives variable
results; this is understandable because in such cases there is no definite an-
swer as to whether the event is usable or not. With more time, the program
could be further developed to identify such borderline events as a separate
category.

The table below shows the results for the first fifty events on run 202
(barring three events where the data cannot be loaded on the programs).

Event number (on run 202) Visual inspection Program verdict
1 Good Good
2 Bad Bad
3 Good Good
4 Clear slope, track not clean Good
5 Bad Bad
6 Good Good
8 Good Good
9 Bad Bad
10 Good Good
11 Messy but perhaps usable Good
12 Noisy but perhaps usable Bad
13 No event Bad
14 Good Good
15 Bad Bad
16 Good Bad
17 Good Good
18 Good Good
19 Messy but perhaps usable Good
20 Bad Bad
21 Messy but perhaps usable Good
23 Messy parts, perhaps usable Good
24 Good Good
26 Messy but perhaps usable Good
28 Bad Bad
29 Good Good
30 Messy middle, but usable Good
31 Bad Bad
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32 Good Good
33 Messy but perhaps usable Good
34 Bad Bad
35 Messy in the middle Bad
36 Good but a few bumps Good
37 Bad Bad
38 Good Good
39 Messy but perhaps usable Good
40 Messy but usable Good
41 Good Good
42 Good Good
43 Good Good
45 Good Good
46 Good Good
47 Good Good
48 Messy but perhaps usable Good
49 Good Good

As an example of a borderline event, figure 18) shows event number 11
on this run, which a human observer classified as messy but perhaps usable,
but the program labelled as Good. It can be seen that despite the messiness,
there is a clear slope and the best fit line remains close to the data, so it is
reasonable for this to be considered a good event.
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Fig. 18)
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Light Blocked by Wire Arrays
Consider a photon detector of width 20 cm. Five planes containing arrays

of wires are placed between the counter and the source. The wires have
diameter 0.015 cm, and the distance in the plane between their centres is 0.5
cm. The spacing between the planes is 0.5 cm and the distance between the
detector and the closest plane is also 0.5 cm. We would like to know what
fraction of the light which would otherwise have reached the counter will be
blocked by these wireplanes.

The experimental setup

My first step was to find the total angular range blocked by each of the
planes. To do this, I first considered the light blocked by a single wire. I
observed that all light rays falling between the two rays which are tangent
to the outside of the wire at the point of their intersection with the wire will
be blocked. Thus I wrote the following simultaneous equations:
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(1)
y = tan(θ)x

(2)
dy/dx = tan(θ)

(3)
(x− xo)

2 + (y − yo)
2 = r2

(4)

dy/dx =
xo − x

y − yo

The origin of the coordinate system is at the source, with the x axis
parallel to the detector and the y axis perpendicular to it.

(1) is the equation representing the ray travelling outwards from the
source at an angle θ to x axis. (2) gives the gradient of this line.

(3) is the equation of the outside of the wire at a distance yo from the
source and xo from the centre of the detector (r is the radius of the wire,
0.0075 cm). (4) gives the gradient of the outside of the wire for particular
values of x and y.

Solving these equations for θ, we find

θ = sin−1(
±r√
x2o + y2o

) + tan−1(
yo
xo

)

(using +r gives the angle further to the left, while -r gives the angle
further to the right).

I therefore wrote a spreadsheet giving a full list of the angular ranges
excluded by the wires, for two different values for the distance between the
source and the detector (20 cm and 100 cm). From this information I could
easily calculate the total angular range blocked by any wireplane individually,
as shown below.
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Distance between plane and source Sum of angular ranges excluded
17.5 0.03339
18.0 0.03225
18.5 0.03174
19.0 0.03097
19.5 0.03024
97.5 0.00630
98.0 0.00626
98.5 0.00623
99.0 0.00620
99.5 0.00617

However, I could not simply sum these results to find the total proportion
of light blocked, as there is the possibility that the planes closer to the source
might partially shade some of the planes further off, which would decrease
the total proportion. Nor was it practicable to manually compare the angles
excluded by each plane to determine the overlap. Therefore I wrote a program
using C++ which took angles at intervals of 0.000001 across the full range
of interest and determined the proportion of these which fell inside at least
one of the angular ranges excluded by the wires.

For the range of interest I used all angles between π
2

+ tan−1(10
d

) and
π
2
− tan−1(10

d
) where d is the distance between the detector and source. Any

light ray travelling at an angle outside this ray will miss the detector in any
case, and so it does not matter whether it is excluded by a wireplane or not.

The results of this analysis are displayed below. The second column gives
the percentage of light that would be blocked by the given plane individually,
while the third column gives the percentage of light blocked by all the planes
up to and including the given plane. It can be seen that the shading of later
planes by earlier ones is quite minimal.

For a distance of 20 cm between detector and source:

Plane number Source-plane distance Light excluded by plane Cumulative total
Plane 1 17.5 cm 3.113 % Plane 1: 3.113 %
Plane 2 18.0 cm 3.098 % Planes 1-2: 6.094 %
Plane 3 18.5 cm 3.114 % Planes 1-3: 9.074 %
Plane 4 19.0 cm 3.114 % Planes 1-4: 11.984 %
Plane 5 19.5 cm 3.114 % Planes 1-5: 14.781 %
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For a distance of 100 cm between detector and source:

Plane number Source-plane distance Light excluded by plane Cumulative total
Plane 1 97.5 3.005 % Plane 1: 3.005 %
Plane 2 98.0 2.990 % Planes 1-2: 5.543 %
Plane 3 98.5 2.975 % Planes 1-3: 8.066 %
Plane 4 99.0 2.959 % Planes 1-4: 10.572 %
Plane 5 99.5 2.945 % Planes 1-5: 13.065 %

Notice that the results in the second table, if converted to angular ranges,
do not entirely agree with the corresponding results in the first table. This
is because the first table gives the sum of all angles excluded by the given
plane, whereas the second includes only angles between π

2
+ tan−1(10

d
) and

π
2
− tan−1(10

d
) .
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Positions for Photon Counters

Consider a scintillator sheet of radius 6” and a detector of radius 4”.
Assume that the angular distribution of the photons released from the scin-
tillator is uniform. What is the optimum positioning of the scintillator above
the detector in order to maximise the proportion of the photons released
that will reach the detector? I used C++ programming to apply Monte

Carlo methods to this integration. I selected a value for h which I intended
to test. I chose a point R along the radius of the scitillator, then selected
an azimuthal angle and a polar angle to characterise the direction of travel
of the photon emitted, and calculated the coordinates of the point at which
such a photon would intersect the plane containing the detector.

When the scintillator is at a height h above the detector, and a photon is
released from coordinates (x,y,h) relative to the centre of the detector, with
azimuthal angle φ and polar angle θ, it will intersect the plane of the detector
at coordinates:

x2 = R + h× tan(θ)cos(φ)

y2 = h× tan(θ)sin(φ)

The photon enters the detector if the condition x22 + y22 < 16 is met.
I then carried out this test multiple times, varying the values of θ and φ

separately in order to cover the entire range of photons emitted. I assumed
that the angular distribution of photons was uniform. This meant that to
generate values of φ I merely had to start from 0 and increment by my
chosen interval (0.01) until I reached φ = π. However, the frequency of θ
must be weighted by a factor of sin(θ) in order to cover a spherical surface
uniformly. Therefore in order to obtain values for θ I defined a variable x
such that θ = cos−1(1 − x); I then started fromx = 0 and incremented x by
the chosen interval (0.0001) until I reached x = 1. I used the results of these
tests to obtain the proportion of photons emitted at radius R which would
be expected to arrive at the detector.

Finally, I repeated this procedure for different values of R. The values
of R ranged from 0 to 6, at intervals of 0.1. However, I also had to make
sure to weight the proportion obtained at each different R, because there is
a larger area corresponding to a given increment in radius at the edge of the
scintillator than at the centre. To compensate for this effect, I multiplied
the proportion obtained for each value of R by 2πR × 0.1 (i.e. the area
corresponding to R + dR, with dR = 0.1”). To obtain the final result, I then
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divided the sum of all these weighted proportions by the total area. Thus I
used the formula:

proportion =
6∑

R=0

p(R) × πR× 0.1

π × 62
.

I then applied the resulting program to a range of values of h, in order to
ascertain the optimum positioning of the equipment. My results are displayed
below.

Height Proportion of photons detected
0 0.4444

0.2 0.4369
0.4 0.4184
0.6 0.4002
0.8 0.3825
1.0 0.3652
1.2 0.3485
1.4 0.3325
1.6 0.3171
1.8 0.3025
2.0 0.2885
2.2 0.2752
2.4 0.2626
2.6 0.2506
2.8 0.2393
3.0 0.2285
3.2 0.2183
3.4 0.2087
3.6 0.1996
3.8 0.1909
4.0 0.1828
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I conclude that the optimal experimental arrangement has the scintillator
placed directly on top of the detector.

Discussion
I went through several stages in this calculation. My original intention

was to integrate over the entire scintillator by incrementing x and y (rather
than using R and weighting the results). I also intended to use a random
number generators to produce appropriate values of φ and θ.

However, a number of tests on the accuracy of my results revealed signif-
icant problems. My first test was to see if the program produced the correct
result for a vertical separation of zero between the scintillator and detector -
in that case, the proportion of photons obtained should just equal the ratio
of areas: detector

scintillator
. I obtained 0.44, which is the expected result.

I next ran the program for a vertical separation of 100”. At such a
great separation, we would expect the proportion of photons obtained to be
approximately equal to the area of the detector divided by the surface area
of the half-sphere with radius 100 subtended by the scintillator. This did not
prove to be the case. I then carried out a similar test but reduced the area
of the scintillator to the single point, in case its finite area were making the
approximation untenable, but the results still did not match.

After some investigation, I discovered that the cause of the problem was
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the quantisation of the θ and φ values arising from the fact that the random
number generator can only produce integer values. In order to obtain decimal
values between 0 and π for φ, I had been generating random integers between
0 and 31420 and dividing the result by 10000; similarly, to obtain decimal
values between 0 and 1 for x, I had been generating random integers between
0 and 10000 and dividing the result by 10000. This strategy limits the fine-
graining of the values obtained for φ and θ, leading to inaccuracies.

Thus an obvious solution was to increase the range of numbers generated
and the divisor by the same factor in both cases. However, this was not
an option, because the random number generator can only produce values
up to 32767. Therefore I decided to avoid using a random number gener-
ator, and instead simply took values of φ and θ and incremented them as
described. However, this strategy significantly increased the run time of the
programme; in order to decrease the time I therefore changed from integrat-
ing over the entire scintillator to integrating over R only and weighting the
results appropriately.

The same checks of accuracy were carried out on this programme as on
the previous one. It gives the expected result (0.44) for a height of zero.
It also gives the correct result for a single point at a vertical separation of
100”, but only provided that x is changed by increments of 0.00001. Such
small increments are not practicable for the full program, because the run
times become unmanageable; therefore I chose to use increments of 0.0001,
meaning that the results obtained are only approximate. At a height of
100”, the program predicts that a proportion 0.00085 of photons will strike
the target, as compared to the proportion 0.0008 obtained from considering
an area on the surface of the sphere, as described above. Thus the results
should be taken as approximate (accurate to within a factor of about 7%).

I do not think this error should be a source of serious concern, because
the trend - a steady decrease in the proportion of photons as the scintillator
is raised - is clear, and indeed, the same trend was evidenced by all versions
of this program. Therefore this error probably does not affect the reliability
of my conclusion.
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