
1

Idle virtual machine detection in FermiCloud
Giovanni Franzini

SEPTEMBER 28, 2012

Fermi National Accelerator Laboratory

Scientific Computing Division

Grid and Cloud Computing

Abstract—The aim of this work is the optimization of the
computing resources at Fermilab, that are provided to the
users through two Cloud Computing systems: FermiCloud and
FermiGrid. So, a proper use of the available computing cycles
is required. This work is focused on the identification of idle
virtual machines in FermiCloud, in order to retire them and free
computing resources. A virtual machine idle detector prototype
was developed. The product monitors the activity of the VM and
combining the collected information, identify when a VM is idle
with 90% accuracy.

I. INTRODUCTION

FermiCloud is a private cloud providing Infrastructure-as-a-
service services to Fermilab employees and users, to manage
dynamically allocated services, interactive and batch process-
ing. At Fermilab, this distributed computing system can share
resources with FermiGrid, a distributed campus infrastructure
that manages, conversely, statically allocated compute and
storage resources for batch processing. In particular FermiGrid
is used to run compute-intensive jobs related to experiments
conducted here at Fermilab. The FermiGrid resources can be
extended launching Virtual Machines configured as "batch
nodes" running on FermiCloud. A VM mimics a physical
computer in all its features. In order to maximize available
computing cycles both for FermiCloud and FermiGrid, opti-
mization of their individual utilization is required.

This work is focused on identifying and minimizing idle
virtual machines in FermiCloud. An idle virtual machine is
a machine that is not currently providing computing services.
To increase the overall batch capacity of FermiCloud, these
virtual machines can be retired and substituted with "batch
nodes" VM accessible by FermiGrid.

To detect idle virtual machines, a set of indexes were created,
to monitor and expose the activity of a virtual machine. After

that, a rule to identify the status of the machine was defined.
This last point was supported by experimental data coming
from tests on real working virtual machines in FermiCloud.

Section II describes the indexes created to monitor the virtual
machine activity. In Section III can be found the “idleness
rule” defined to identify the status of the VM, as well as
the needed thresholds to evaluate the rule. Last, Section IV
presents the test results of the final prototype, with a short list
of possible improvement for the idle detector.

II. INDEXES FOR IDLE DETECTION

In order to identify an idle virtual machine, some of its compo-
nents and activities must be monitored periodically. Keyboard
usage is among the most important activities. If someone is
using the keyboard, we will be quite sure that the machine is
currently in use. But when the keyboard has not been used
for a long time (e.g. one hour), other indicators are needed
to understand if the machine is really providing computing
services or not. The CPU idleness is a good parameter to figure
out if there is some compute-intensive job running. A low
value of this parameter suggests an active usage of the CPU by
one or more process. But sometimes the CPU is idle because
a process in execution is waiting for data coming from an I/O
interface, or for gaining access to a file locked by someone
else. The iowait index shows its potentialities in these cases.
“Iowait” is one of the possible machine statuses of the Unix
operating system. A virtual machine enters into this status
when the CPU is idle and there is at least one I/O operation in
progress (it can involve both local disk and remotely mounted
disk). Furthermore, parameters about virtual memory activity
can be used to understand the degree of idleness of a machine.
In particular, context switches and memory paging activity can
tell us if the machine is loading memory pages for a new
process, or other programs are resuming their execution. A

2

virtual machine could also provide services to the network,
it can be for example a web server. So, network activity of
the VM must be observed, to properly define the status of the
machine.

These considerations lead to the definition of six indexes for
idle detection:

1) CPU idleness.
2) Keyboard / pseudo-terminal idle time.
3) Bytes received and transmitted by the VM’s network

interface.
4) Iowait ticks.
5) Context switches.
6) Memory paging in/out.

For all of them but one, keyboard / pty index, an exponential
moving average (EMA) is computed. It is a special weighted
average defined as follows

S1 = I1

Sn = (1 − α) · In + α · Sn−1 , n > 1

where Sn is the EMA and In is the index value, at step n.
Generally α < 0.5 in order to give more importance to the
new index value. This average keeps track of its old values,
influencing the current measure. How much the old values
affect the average depends on the coefficient α. During the
test it was set α = 0.3, with a sampling period T = 60 s.

The defined indexes are discussed in the following sections.

A. CPU idle

The CPU idle index relies on the uptime Unix file (which can
be usually found into the /proc directory). This file contains
two values:

1) the total number of seconds the system has been up
(totaln);

2) how much of that time the machine has spent idle
(idlen).

Starting from these information, we compute a percentage
(actually, a number between 0 and 1) of system idleness,
during a sample period.

∆idlen = idlen − idlen−1

∆totaln = totaln − totaln−1

idlePercn = ∆idlen/∆totaln

After these steps, the EMA of idlePerc is computed. Some
Unix distributions (like Scientific Linux Fermi 5) intend this
value as the amount of time the machine has spent idle.
Thus, the idle time is always less than the total time. Other
distributions (e.g. Scientific Linux Fermi 6) count the idle time
of every single CPU, and then put the sum of all of these into
the uptime’s idle time field. In this case, the idle time could
be greater than the total time. Therefore it is necessary to
know how the VM’s operative system implements this counter,
in order to contain the index values between 0 and 1 (a
percentage).

Figure II.1. CPU idle index during prime number stress test. The test, started
at t = 90 s and finished at t = 280 s, consisted in identifying prime numbers
less than 300000. Index sampling time for this test is T = 5 s.

B. Iowait, context switches and memory paged in/out

The Unix command vmstat -s shows to the user a series
of counters updated by the kernel. Within this list, we can
find information about the number of paging in and out,
context switches and iowait ticks (i.e. the number of ticks
the system has spent in the iowait status). A tick is an
arbitrary unit for measuring internal system time. In Linux,
the number of clock ticks per second can be obtained using
sysconf(_SC_CLK_TCK).

From the counters values, three of the six indexes are com-
puted. Context switches, paging in and out share the same
formula. They are computed as the difference between the new
and the old value at every sampling time. This way we know
how many context switches (or paging in and out) occurred
in the previous period.

The iowait index needs a preliminary conversion of the sample
period in ticks. After that, the percentage of time the machine
spent in iowait status is computed (again, a number between
0 and 1). Let iowaitn be the number of iowait ticks reported
by the vmstat command at step n, and Tticks the index

3

sample period in ticks. Then the iowait index (iowaitPerc)
is evaluated as follows.

∆iowaitn = iowaitn − iowaitn−1

iowaitPercn = ∆iowaitn/Tticks

C. Keyboard / pty idle time

To obtain the amount of time since the keyboard was last
used, we reused some of the Condor source code (in particular
src/condor_sysyapi/idle_time.cpp). Condor is a
workload management system for compute-intensive jobs.
During the first phase of this work, its possible use for
performing the VM idle detection was investigated. It turned
out that only the keyboard / pty idle time mechanism was
useful for our purpose.

The extracted code uses the utmp file to obtain the number of
seconds since the last activity detected from a keyboard or one
of the pseudo-terminal (pty) associated to logged in users. This
way we know the instant of last detected interactive activity.
If no one is logged in, the index value will be −1. For this
index EMA is not computed.

D. Network activity

Network activity of the VM is monitored using the information
stored into /proc/net/dev file. Two indexes were created
to count the number of bytes transmitted and received during a
sample period, by the VM’s network interface (usually eth0).
An EMA is computed for both the indexes.

Figure II.2. Bytes transmitted (and EMA) per period during two ping tests.
Tests started at t = 460 s and t = 640 s. Index sampling period was T = 10 s
during this test.

III. IDLENESS RULES

The staatus of a VM is defined by collecting the values of the
indexes periodically. This period is different from the index
sample period, as long as we can perform the idle detection
test on a longer time scale (e.g. every hour). The idleness test
is based on the evaluation of a logical rule (or a set of them)
that can return only two values: idle or not idle. This rule
may be very simple, and may be different from VM to VM,
according to their tasks.

In order to write an “idleness rule”, thresholds for the indexes
must be defined. These thresholds should be related to typical
indexes values when the VM is idle. Two possible ways to
obtain them are:

1) experimentally, running 24 hours tests on VM where
usage time are known (we know in every moment if the
machine is idle or not);

2) training a neural network, in particular an ANFIS (Adap-
tive Network Fuzzy Interference System).

Both the solutions need data from VMs in use. The second one
needs a good knowledge of the status of the machine in every
moment, in order to perform a good training of the network.
The trained network can be used in two ways. The first one
as an idle detector, implementing it in C++ for example. The
second way need an extraction of the network weights in order
to obtain the wanted thresholds. As a matter of fact, some of
the parameters of the network, tuned during the training phase,
are the thresholds needed to evaluate the idleness rule. So after
a first training of the network, these values may give an idea
of the final “idle” threshold for the detector.

During this work, the first solution was chosen. A pool of
friendly users working at the Fermilab Computing Division
marked down when they used their VMs, while the detector
was recording index values. Logs from these VMs were
processed to obtain a first set of thresholds. The processing of
these data consisted in computing an average of the indexes
values recorded while the machine was idle. The results are
shown in Table I. Data coming from 30 FermiCloud VMs were
used. Keyboard / pty idle time threshold was set at 1 hour.

4

Table I
IDLE THRESHOLDS OBTAINED PROCESSING TESTS RESULTS.

Average Std. Deviation
CPU idle 0.996 0.0053

Keyboard / pty idle time 3600 ~

Bytes tx per period 2089906.54 4147777.63

Bytes rx per period 408922.42 2151731.32

iowait 0.0026 0.0015

Context switches per period 3012.74 3378.73

Paging in per period 62.43 313.01

Paging out per period 449.19 454.68

As we can see, these values are characterized by an high stan-
dard deviation, pointing out the difference of values recorded
among the different VMs. These lead to the definition of
a simple idleness rule, that uses only few indexes, with a
low standard deviation. In particular, observing some of the
collected logs, the paging in index has a value different from
zero when the user starts the execution of a process on his
virtual machine. Otherwise its value is always zero, except
in some isolated cases where was found a periodic pattern
(periodically the paging in index showed a value different from
zero).

The algorithm used to implement the idle detection test is the
following.

SOMEONE_LOGGED = (keyboard_pty != -1);

KEYBOARD_USED = (SOMEONE_LOGGED &&

keyboard_pty < th_keyboard_pty);

CPU_IDLE = (cpu_idle > th_cpu_idle);

IOWAIT_IDLE = (iowait < th_iowait);

PI_IDLE = (paging_in < th_paging_in);

rule_A = (SOMEONE_LOGGED && !KEYBOARD_USED &&

CPU_IDLE && IOWAIT_IDLE && PI_IDLE);

rule_B = (!SOMEONE_LOGGED && CPU_IDLE &&

IOWAIT_IDLE && PI_IDLE);

vm_status = (rule_A || rule_B) ? IDLE :

NOT_IDLE;

The thresholds used for the tests are listed in Table II. They
were obtained combining the data contained into the logs
coming from the 24 hours tests, and the index average values
when the VM is idle, shown before. The rules were evaluated
every 1 hour.

Table II
THRESHOLDS FOR TEST PHASE

th_keyboard_pty 3600
th_cpu_idle 0.96
th_iowait 0.01

The rule is actually divided into two sub-rules, to differentiate
cases when someone is actively using the machine (rule_a:
keyboard activity is detected) from case where there is no
interactive activity (rule_b). After that, CPU idleness, iowait
ticks and memory paging in are considered.

IV. TEST RESULTS AND CONCLUSIONS

Test results are shown in Table III. As we can see the idle
detector identifies correctly the VM status 90% of the times.

Table III
IDLE DETECTOR TEST RESULTS.

VM hostname Hit
fermicloud010 16/27
fermicloud049 25/27
fermicloud053 26/27
fermicloud064 25/27
fermicloud089 26/27
fermicloud092 25/27
fermicloud101 25/27
fermicloud108 25/27
fermicloud130 25/27
fermicloud141 26/27

However, several things must be pointed out. The majority of
the machines used for these tests were always idle. Only for
a few number of virtual machines, detailed information about
their usage time were available. Therefore, further tests are
required, in order to understand the real performance of this
algorithm.

A series of new tests may also be useful to better define
“idle” thresholds. In particular a pool of virtual machine with
different tasks could be a useful test group to understand
the difference between the index values recorded on different
machines. This way, different rules for different kind of
machines might be defined.

Moreover, the index values may be processed in a different
way. In particular, instead of computing the EMA at every
sampling time, index values may be recorded in a log file.
Then, when it is needed to perform the idleness test for the
virtual machine, data collected into this file may be processed

5

to foresee the machine activity in the future, or to understand
what the machine did during the previous period. So different
uses of these indexes are possible.

All tests use α = 0.3 as coefficient for the EMA. Further tests
could be performed to tune this parameter to satisfy different
requirements. Different values for α changes the behavior of
the index average, increasing or reducing its “decay” time.

	Introduction
	Indexes for idle detection
	CPU idle
	Iowait, context switches and memory paged in/out
	Keyboard / pty idle time
	Network activity

	Idleness rules
	Test results and conclusions

