

Developing a Python Library to Support the CC-USB

Control Module

And its Implementation at the Fermilab Test Beam Facility

Karen Lipa, SIST Intern

College of Engineering

University of Illinois at Urbana-Champaign

Urbana, IL

8/9/2012

1

Table of Contents

I. Abstract

II. Introduction

III. Motivation

IV. Methods

V. The Software

a. CAMAC

b. Wrapping in Python

c. Python Classes

d. Testing

e. Multi-module (and Multi-crate) Readout

VI. The Experiment

VII. What’s Next?

VIII. Acknowledgements

2

2

3

4

5

5

6

8

9

10

11

14

15

2

I. Abstract

The project aimed to develop a Python software library on Linux to

communicate with the CC-USB CAMAC control module manufactured by Wiener Co.

The software library consists of Python wrappers around low-level C functions,

provided by the manufacturer. The low-level C functions interact with the Linux

USB subsystem. To simplify the user interface for CAMAC communication, the

Python wrappers were used to develop Python classes which make the CAMAC

interface object oriented. The software was optimized to readout wire chambers

which are part of a cosmic ray test stand at the Fermilab Test Beam Facility (FTBF).

II. Introduction

Fermi National Accelerator Laboratory, also known as Fermilab, is a United

States Department of Energy National Laboratory dedicated to “advancing the

understanding of the fundamental nature of matter and energy” through high

energy physics. Many of the experiments at Fermilab involve observing certain

events or occurrences many, many times in order to find the one time when a new

discovery can be revealed. This requires the intake and storage of lots of data as

these searches and measurements are being made. One of the methods utilized at

Fermilab for data storage is the CAMAC crate. CAMAC crates hold up to 24 plug-in

modules and one crate control module, which can interface with a computer. They

employ a parallel dataway bus that enables a user to address modules by slot

number, subaddress number, and function number in order to read data from the

3

modules into the controller and write data from the controller to the individual

modules. This technology has been around and in use since the early 1970s since it

is still one of the most efficient and cost-effective methods for storing and accessing

the large amounts of data handled at Fermilab. One more recent improvement to the

system that has been developed though, is a change in the type of control module

used. Fermilab has been using SCSI bus control modules for many years now, but it

has now become desirable to implement the use of more standard and compact USB

control modules. I have had two main general goals for this summer: implementing

the CC-USB control modules manufactured by the WEINER company for use at

Fermilab, and creating a Python-based software system to make the use of the CC-

USB (and other control modules) easier and more efficient. I also worked

specifically to tailor the software to one particular experiment. I used time-to-digital

converter CAMAC modules to read out data generated by a wire chamber within a

cosmic ray telescope in order to determine the locations of particles traveling

through the scope.

III. Motivation

Implementing the use of the CC-USB control modules involved familiarizing

myself with the data acquisition system used here at Fermilab and the CAMAC

standard system. One of the big goals throughout this project was to make the code

as simple and easy to understand and modify as possible for the future users. As I

was only a summer intern, the software needed to be well-documented enough and

sufficiently easy to understand so that physicists at Fermilab will be able to modify

4

it in whatever ways necessary for their future projects without relying on my help to

make the changes to the base code. For this reason, I worked to wrap the base code,

written in C, in Python. Python is a high-level programming language designed for

easy readability and modification. Wrapping the C-code enables all the functions

written in C to be called and accessed from Python, which gives the user all the

speed and functionality that C provides accompanied with the easy modification and

user-friendliness of Python.

IV. Methods

I came into my internship at Fermilab with a basic knowledge of C programming,

having just completed a college C programming course during the spring semester,

but virtually no knowledge of the Python programming language, CAMAC crates, or

the data acquisition systems used at Fermilab. I started off toying around with a

Windows GUI that was connected to one mini CAMAC crate with a CC-USB control

module, just to get a feel for how the computer communicates with the control

module and the other modules within a crate. During that time period, I also spent

time reading documentation on the CC-USB control module, as well as information

on the CAMAC system in general. The next step was to review and gain a thorough

understanding of the “example” C-code provided by the WEINER company. I spent

several weeks running tests and ensuring I had a full grasp of what each function

did, not only within the computer but within the CAMAC crate itself. After that, I

went through the tricky process of creating wrapper functions in C that would wrap

the C functions code in a way so that it would be accessible from Python. This is a

5

moderately well-documented process, but took quite a bit of trial-and-error and

searching the web to complete successfully. Following the wrapping of the C-code

came the bulk of the work: writing the Python classes and methods to take the

wrapped C functions and make them as simple and easy-to understand for the end

user. This involved several weeks of reading up on Python programming itself and

practicing with simple examples. Once I had the hang of it, I set out to develop a

specific software system for the CC-USB, CAMAC devices in general, and finally for

general data acquisition. Once these had all been developed, I moved my work

station from Fermilab’s D0 Assembly Building over to the Test Beam Facility so that

I could use the system to read out data generated from the cosmic ray stand. First, I

had to set up my NIM and CAMAC crates and run several standardized tests that I

had developed in order to ensure that all the hardware (such as individual modules

and the pulse generator) was working properly. This took quite a bit of time as

many of the modules are old and have been sitting around in the Test Beam Facility

for some time. During this time, I was also confronted with certain aspects of my

software that were not ideal and worked to fix those, in addition to constantly

improving my documentation and debugging methods.

V. The Software

CAMAC

 CAMAC, which stands for Computer Automated Measurement and Control, is

a system which has been widely used at Fermilab for many years as a means of data

acquisition and storage. As was stated in the introduction, CAMAC crates allow for

6

communications between a computer and the individual modules within the crate

through the use of the read and write busses in the back of the crate. This is an

advancement from NIM crates, an older crate style that required physical

adjustments, such as the insertion of pins or turning of small dials with a jewelry

screw on each module in order to adjust their individual settings. While CAMAC

crates have been in use for quite some time and are utilized and understood by

many people at Fermilab, the CC-USB control module is a much newer technology

and, as such, has not yet been properly implemented for use at the lab. The

particular CC-USB control module that was used is one manufactured by WEINER

Co., and came accompanied with some low-level C code to be used for accomplishing

most basic functions with the module. For example, the code provided functions to

find all the CC-USB devices attached to the computer, open them, and perform read,

write, clear, inhibit, and initialize functions. While there were many other functions

included in this example code, many of them were not necessary, or were called

from other functions, and did not need to be wrapped in order to be accessed from

Python.

Wrapping in Python

 The purpose of wrapping C code in Python, more formally referred to as

“extending Python with C,” is to provide access to the C functions from Python. This

is desirable because Python is a high-level, object-oriented language, with an easily

understandable syntax that provides for easy comprehension and modification of

the code. C code, on the other hand, has a much more complex syntax which makes

it take much longer to write. By wrapping the C functions provided by the WEINER

7

Co. in Python, all the functions specific to the CC-USB and to USB devices in general

can still be utilized, but in a much more user-friendly way.

 The first step in creating a Python wrapper is to write the main wrapping

function. Python and C differ in that Python is an object-oriented language (meaning

that all integers, strings, etc are objects on the heap), while C is not. The wrapper

function acts to mitigate this disconnect by converting between Python objects and

C types within this wrapping function. There are two functions, PyArg_ParseTuple

and Py_BuildValue, that act towards this purpose. PyArg_ParseTuple takes in a

Python object and converts it to a C variable of a type specified by the user in the

form of a format string (e.g. as shown in Image 5.1 if a user wanted to convert the

Python object “command” to a C string, they would use the format string “’s’”). This

newly converted C string can now be used as an input in the C function that is being

wrapped (in this example, system()). The return value is then converted back into a

Python Object through the use of the Py_BuildValue function. Through this process,

it would appear from the Python code that you are simply passing an object into a

function, and then getting an object back out and the user does not have to worry

about dealing with the underlying C function.

Photo: http://docs.Python.org/extending/extending.html#a-simple-example

Image 5.1 Example of a simple wrapper function

8

 The next step in wrapping a function is creating a methods table, which

basically just informs the system (and the user) of what names the user will use to

call each function. This can be seen in Image 5.2, the methods table corresponding

to the above given example of the wrapper function.

 The final part of the wrapper function file is the initialization function. This

function defines the name of the module to be called from Python when the wrapper

function is run. (Image 5.3)

Python Classes

 A class in Python is basically a blueprint for the different attributes and

functions that can be performed on something. For example, a class for a CAMAC

crate would have attributes such as an ID number, and would include functions to

open the crate and to perform the read, write, clear, initialize, and inhibit functions.

Photo: http://docs.Python.org/extending/extending.html#a-simple-example
Image 5.2 Example of a methods table

Photo: http://docs.Python.org/extending/extending.html#a-simple-example
Image 5.3 Example of an initialization function

9

Within a class are things called methods, which are functions that apply only to

instances of the class. As was mentioned, the class simply defines a blueprint, and an

instance of a class must be created in order for it to be put to use. Creating an

instance of a class endows that instance with all the attributes that are defined

within the class and also enables all the class methods to be performed on that

specific instance. The first step in setting up the Python library was to develop the

base class. This was a CC-USB crate class, with methods to perform open crate, read,

write, initialize, clear, and inhibit functions. From this class, a CAMAC module class

was constructed, which inherited all the methods contained in the parent class,

while also creating methods of its own. Certain specific modules, such as the Jorway

85A and the Lecroy 3377 were also given their own classes, with specific methods

relevant to those modules. For example, within the class for the Jorway 85A (a scaler

counter module) is a readscaler method, which calls the read method, with specific

inputs relevant to the Jorway 85A.

Testing

After several Python classes were created, the next step was to create test

scripts, which include all the necessary steps in testing a certain class to ensure that

all the software was working correctly and that the proper data was being returned.

These test scripts were also later used once the software was completed as a quick

means of testing out pieces of hardware to make sure everything was working

correctly. At this point, a test script was able to be run and data was read out for the

first time from a Lecroy 3377 TDC module. The TDC works by logging a hit and then

keeping track of the time from that hit until it receives a “stop” signal. The data in

10

this testing phase came from a pulse generator, which produced both a simulated

“hit” and the “stop” signal.

Multi-module (and multi-crate) readout

 Once it became possible to read out the data generated by a pulse counter,

the next goal was to enable multiple modules to be read out at once. In many cases

(like with the cosmic ray telescope project) it is necessary to be able to read out a

whole crateful, or even multiple crates full of TDCs. This involved extending the

CAMAC crate class to include methods such as TDCreadout, which would loop

through all the references to TDC module instances within the crate, and read each

one. This process required a solid knowledge of the workings of Python and the

class and inheritance systems. After the multi-module readout script had been

written and successfully tested, work began on a system class, which would be able

to find and open all CAMAC crates in the system, not just CC-USBs, and read them

out at once. This took the specific CC-USB software and extended it to be used for all

CAMAC devices since, while the CC-USB is the latest technology, there are still many

SCSI control modules lying around at Fermilab, and it would be good for the

software to be able to be applied to them too. At the conclusion of the summer

internship, this “system readout” class and script were still not completed, as the

SCSI software was not yet brought up to the same level as the software for the CC-

USB.

11

VI. The Experiment

 Fermilab Test Beam Facility describes its goal as “providing flexible, equal

and open access to test beams for all detector tests, with relatively low bureaucratic

overhead and a guarantee of safety, coordination and oversight.” The particular

project that the CC-USB control module and data acquisition system was optimized

for this summer was a cosmic ray test stand. The project aims to use the test stand

as a means of locating high-energy particles traveling through a telescope in order

to provide an optimal system for testing new detectors. Particles are detected and

located within the telescope through the use of wire chambers and scintillators that

are attached to photo multiplier tubes (PMTs). These pairs of scintillators and PMTs

are spaced out in a vertical fashion with several wire chambers in between in order

to track the timing and locations of particles that pass through the telescope.

Image 6.1 Diagram outlining layout of cosmic ray telescope at FTBF

12

Lecroy 3377 time-to-digital converter CAMAC modules (which in this case

are set to common stop, single word mode) keep track of the time between when a

hit is recorded and when the stop signal is received. There are numerous different

options for settings, such as the resolution of the data value, maximum number of

data words per channel, etc. that can all be set using a write function command. The

Python library enables the user to set the “debug level,” which is a value that

determines how much information is being shown upon readout. A user may choose

to see the register values and what they are set to, the header word and meaning,

and the data word, or may choose not to see anything as the data is simply written

to a file.

A scintillator is anything that emits photons when it is struck by a high-

energy particle. The attached PMT produces an electrical signal when a photon is

released. As is visible from Image 6.1, scintillators and wire chambers are placed in

line with each other within the telescope. The purpose of the scintillators is to

generate the “stop” signal for the TDCs, which tells them to stop looking for hits

from the wire chamber. With multiple scintillators all lined up and interspersed

with the wire chambers, the hope is that if several of the scintillators were hit with a

high-energy particle around the same time, that means that the particle also

traveled through the wire chamber in between them.

13

A NIM module called a discriminator was used to determine the number of

scintillators that needed to be in coincidence before the stop signal was transmitted

to the TDCs. Requiring more scintillators to be in coincidence decreases the number

of stop signals and increases the reliability of those signals in that they have an

increased probably of indicating the passage of a particle through the wire

chambers. The discriminator sends a stop signal when the conditions have been

met, that is to say when enough scintillators had a coinciding hit. This signal is then

sent via a Lemo cable to a Lecroy 4301 module within the CAMAC crate. This

module enables that one Lemo signal to be converted into ECL and sent out to the

many Lecroy 3377 TDCs that are in the crate, as can be seen from Image 6.3. The

right-most blue module is a 4301. You can see that it has one green Lemo cable

going in, and then an ECL output that is then distributed out to all 8 TDCs that are

currently in the crate. In total, there are 16 cards of the wire chamber that need to

be read-out, which requires 8 TDCs (since each TDC has two input channels). With

Photo: http://williamson-labs.com/ltoc/cbr-tech.htm
Image 6.2 Diagram of PMT and scintillator

14

all 4 wire chambers in the telescope in place, 24 TDCs will be needed. This will

necessitate the ability to readout two CAMAC crates at a time, since each crate can

only hold 22 Lecroy 3377 TDCs at a time.

VII. What’s Next?

 As with anything in life or in science, there is always room for improvements

in any project. As the cosmic ray test stand is not yet set-up, that is obviously the

next clear step that needs to be taken in order for that project to move forward.

When it is completed, it will contain 4 wire chambers and 4 scintillator/PMT

combos, all meticulously lined up and calibrated for maximal efficiency in the

readout. Software-wise, as was previously mentioned, the system class is not yet

completely bug-free. It will also be necessary for the SCSI software system (which

was worked on by another intern this summer) to be brought up to functionality so

that it may be used in conjunction with the data acquisition and system readout

systems developed for this project.

Image 6.3 Stop signal sent out to TDCs via 4301 module

15

VIII. Acknowledgements

 I would personally like to thank my Supervisor, Geoff Savage, for providing

me with such a challenging and worthwhile project to work on this summer. I would

also like to thank Dianne Engram, Sandra Charles, Jamieson Olsen, and Elliott

McCrory, who supported me throughout this process. In addition, I would like to

thank the entire SIST committee and Fermi National Accelerator Laboratory for

selecting me into this prestigious program and facilitating the great amount of

learning that took place for me this summer.

