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Abstract

The Si-Strip detector was built to provide tracking information at the Fermilab
Test Beam Facility (FTBF). The Data Acquisition software (DAQ) called PxSuite was
designed by a staff of scientists and engineers in the Detector Instrumentation Group
(DIG) of the Scientific Computing Division. The PxSuite software communicates with
the Si-Strip telescope located at the FTBF, therefore recording the impacts between
strips and particles. To do so, it needs methods able to both interact with the telescope
and make sure that the response given by the telescope is right. Throughout this
document, I explain how we improved this software, making it both faster and easier
to read. After this summer, the PxSuite software can now execute commands faster
than before and is easier to read than it used to be.
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1 Introduction

The Si-Strip telescope is a detector used to track particles trajectories. It is located at
the Fermilab Test Beam Facility (FTBF). The telescope is made of fourteen Si-Strip planes.
The planes are connected to the Data Acquisition (DAQ) hardware based on the CAPTAN
(Compact And Programmable daTa Acquisition Node), which is an octagon shaped elec-
tronic board created by the Detector Instrumentation Group (DIG) at Fermilab. A station
is made of two strip planes placed orthogonal to each other; one of them measures with high
precision the x-coordinate of the particle, while the other measures with high precision the
y-coordinate, with the beam defining the z-coordinate. The whole system is represented on
Fig. 1.

The DAQ software, PxSuite, is a web-based application used to control the CAPTAN
hardware and the strip detectors. When particles are passing through the detector, the
recorded signals are sent to the CAPTAN, and then the data is sent to the DAQ computer
through the network.

Fig. 1: Overview of the Si-Strip telescope

The DAQ software is already there. It has been created and works fine. The problem is
that it was slow. Like many other programs, this one has to send commands, lots of them.
The waiting time becomes a factor whenever the software has to wait for the hardware to
respond to its requests, and this can really slow down the program. Another problem occurs
when the data sent is not well understood by the CAPTAN. This can block the software for
a while, or create issues further through the program.

Sometimes one might need to change the configuration of the software; disable some strips
for testing purpose, or select different sources of the running clock. In order to do so, we
need to go to the source code and change the information. Usually this might require other
changes and forgetting one of them can cause the program not to compile. Worst case, the
program might compile and act weird.
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2 System Description

In this section I will describe everything necessary for the telescope to function normally.
The telescope is physically made of CAPTAN boards and of tracking stations. The data
coming from the telescope is sent to the DAQ computer through a gigabit Ethernet. The Px-
Suite is the software that controls all the hardware in this chain. In the next few paragraphs
I will explain the architecture and functionality of each of these components.

Fig. 2: The Telescope

2.1 The Strip Station

Each Si-Strip station (Fig. 4) is made of two Si-Strip planes placed orthogonally to
each other in such way that one measures the x-coordinate and the other measures the y-
coordinate. Each individual strip is 9cm long and 60 microns wide. The strip plane is made
of 639 strips, which makes it approximately 4cm wide. Since the planes are perpendicular,
the total usable area of a strip detector is around 4x4cm2.

Fig. 3: The Strip Station
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2.2 The CAPTAN Board

The CAPTAN (Compact And Programmable daTa Acquisition Node) (Fig. 4) is an
octagon-shaped electronic board designed for data acquisition, processing and control within
High Energy Physics. It is network-based and is made of a series of specifically designed
circuit boards. It is very flexible as it allows the user to mount it with other electronic
devices (including other CAPTAN boards) for particular and specific use. This property of
the board makes it practical for small and large scale applications. Since it is network based,
it includes an Ethernet in order to send data through the network.

Fig. 4: The CAPTAN

2.3 The PxSuite Software

The PxSuite software is the interface between the user and the hardware. The user can
interact and program the hardware through a web-based graphical user interface. It is
written in C++, HTML and JavaScript.

From the PxSuite, the user can initialize, configure, start, pause, resume, stop or halt the
telescope. All these commands are executed by the C++ source code. These same commands
call on other functions that are supposed to prepare the telescope for the chosen state. By
initializing the telescope, we only turn it on and make sure it is ready to work. Clicking on
the Configure button applies all the settings chosen in the .xml files, like the state of the
clock and its speed. The Start function does a lot of operations, like enabling the trigger,
resetting the BCO, and finally starting the data stream. The Pause button only stops the
data stream, while the Stop button resets everything, except the clock source selection. The
Resume button only starts the data stream, since everything else should have stayed the
same after choosing the Pause button.

2.4 The Configuration Files

There are also xml files that are used to configure the telescope and the DAQ. These
files are used by the software whenever the Configure button is clicked. When changing
the configuration, the user can set the desired speed he/she would like the clock to run at,
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the clock source (internal or external), or even choose which strip should be collecting data.
The configuration even has control over the threshold sensibility of the strips, making them
capable of detecting background noise depending on the chosen setting.

3 Objectives

The program, although already working, needed to be fixed in order to run smoother. No
one ever wants to modify their source code all the time, as one simple change can come with
a chain of issues. This is why we needed to make sure that the program could be configured
through an .xml file. That way, if there is ever a problem, we will know for sure that it
comes from the way the suite was set up. Also, it can be tedious waiting 2-3 minutes for
the detector to get configured. It is all about finding a code that is simple enough to make
it work faster and better. Coming here, my goal was to optimize the PxSuite software both
in terms of accessibility and performance.

In terms of accessibility, I had to make sure that the source code was clear. This includes
replacing classes with new ones that can perform more operations, naming newly imple-
mented methods well enough to give the reader a clear idea of their function, and creating
intermediate methods that would decrease the confusion a new person would experience with
program.

There was more work to be done on the performance level. In the programming world,
when we say performance, we mean execution time. I had to make sure that the program
would run faster at the end of the summer. To do so, I had to modify a lot of methods
essential for the program to run well. To make sure that what we want is actually happening,
I had to compare the commands and responses sent between the software and hardware.

4 The Project

One of the lengthiest and most difficult parts of working on a software is getting to know
it. It personally took me 3 to 5 weeks to understand how the software works, and get
accustomed to its layout and wording. In addition, there was a lot of new things to learn,
things that are not taught at school. This all took a long time and by the time I was ready to
start modifying the program, four weeks had already passed. However I was well prepared to
tackle the program’s issues that my supervisor would bring to my attention. These problems,
as explained in section 4: Objectives, can be categorized into accessibility and performance
issues. I will now detail everything that has been done this summer.

4.1 Accessibility

To make the program more accessible, and easier to understand and use, I had to create
and modify a lot of methods. Most of the methods that I created can do specific operations
on registers. Each register has all or some of its 32 bits associated to a specific operation.
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Bits Name Access Description

31 DCM RESET r/w Reset the clock generator module
30 MCLK LOCKED r MCLK frequency locked
29 BCO LOCKED r BCO frequency locked
28 — UNUSED
27 STREAM ENABLE r/w Enables data stream over Ethernet
26 SEND BCO r/w Include BCO number in data stream
25 SEND TRIGNUM r/w Include trigger number in data stream
24 SEND TRIG r/w Include trigger data in data stream
23 TRIG ENABLE r/w Require trigger in order to read data
22 BCO CLEAR r/w Resets BCO counter to zero
21 TRIGNUM CLEAR r/w Resets trigger counter to zero
20 FLUSH r/w Flushes partially filled buffers
19 BCO ENABLE r/w Enables BCO counter increment
17 FASTBCO r/w Doubles maximum possible BCO freq.
16 EXT BCOCLK r/w Selects external BCO clock source

15-11 — UNUSED
10-8 IDLE COUNT r/w Time to wait before dumping idle packet
7-3 PACKET SIZE r/w Number of 32-bit hit words per packet
2-0 N CHANNELS r Number of channels defined in firmware

Table 1: Bit Layout for the STRIP CSR Register

Table 1 shows the layout of STRIP CSR, the register I mostly worked on this summer. The
table also describes the role of each of the allocated bits.

The register can, depending on the selected bit, specify how many 32-bit words there are
per packet, set the time to wait before getting rid of the packets, set the clock source, toggle
between the normal and the fast clock frequency, enable the BCO (Beam Crossing number)
clock, flush partially filled buffers, reset the trigger counter, reset the BCO counter, enable to
trigger for data reading, send the trigger data, the trigger number, the BCO number, enable
the data stream over Ethernet, or reset the clock generator. I also implemented methods
that can check the currently chosen clock source, and set the frequency depending on the
clock source. The registers are in binary codes, so while some functions only affect one bit,
other can affect up to 6 bits.

After having methods taking care of basic register operations, I needed to create simpler
classes that would handle the communication between the hardware and the firmware (a
class that can act directly on the registers). The new and old classes do the same thing, the
new ones directly call all the functions they need. As an example, in the FED (Front End
Driver) interface, we enable the trigger, reset the BCO, and then enable the stream in the
same start function. This puts everything together and makes it easier to locate an error in
the program.
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4.2 Performance

To increase the performance of a program, we usually need to make sure it can do as much
as possible in a very small amount of time. The first step towards this objective was to
decrease the excess time due to errors. This involved creating a method that would compare
sent and received buffers in order to make sure that the hardware understood the commands
sent to it. compareSendAndReceive was made a part of the firmware, could access both sent
and received buffers and had to verify each one of the bits. In the case where some of these
bits would not match, we would just resend the whole buffer until it worked.

Among the methods that I edited to optimize the performance of the software, there was
configureFEC (Front End Controller) and configuredetectors. The first method can now
receive the desired frequency and clock source right from the configuration files and pass it
to the second aforementioned method, which would set the frequency from this information.
To set the frequency, I created a method that can express the frequency as a fraction. The
base frequency (66.667MHz for internal clock, 54MHz for external) is always divided by a
certain factor, depending on the setting of the fast BCO. If fast BCO is enabled, the base
frequency is divided by 4, making it higher than in normal cases (where it is only divided
by 8), we must then multiply it by a fraction to obtain the file-inputted frequency. The
numerator and denominator of this fraction are used to modify the registers that set the
frequency.

The function that creates the DAC buffer was also edited, and this is probably the change
that minimized the processing time the most. Like I already mentioned, when the software
sends a buffer it needs to wait for a response from the hardware. This response tells us
that the command was well-interpreted. Usually, buffers are sent one by one, but there
can be a lot of them. This increases the time we have to wait until the whole command is
executed. Since a buffer string can store up to around 1000 bits, it does not harm to send
multiple commands using the same buffer. makeDACBuffer was edited so that one buffer
string would take a many commands as possible. This meant less waiting time, so a better
performance from the PxSuite.

While running, the PxSuite might not have the same information as the hardware. The
information from the hardware (the CAPTAN) is the right one, since the CAPTAN is the
one doing the real job. Thus we must synchronize the software with the CAPTAN often.
Before every important step, such as starting the data acquisition, we would just look for
a response from the hardware. To do so, we just send the current register, and read in the
buffer that is returned. From this buffer, we can create a new register that will therefore
assure that the software and hardware are working on the same thing. The method that
executes all of the above was also used to check the validity of the returned value, since
sometimes the hardware can misinterpret commands.
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5 Results

The PxSuite is now much faster and the source code is easier to read. There are certainly
more methods than before, but they help the programmer read the code easily. Sometimes
it is better to add intermediate methods that can be used almost everywhere in the program
than have to re-write them all the time. This saves the programmer time, and makes it
easier to avoid mistakes that can take hours to fix.

The program can now be configured through the .xml files and no longer requires someone
to go into the code and edit variables. This is really important as it makes testing much
easier. In addition, there is no more need to re-compile the program every time a change is
made.

6 Discussion and Conclusions

The software still has a lot of things that need to be worked on. I started the imple-
mentation of methods related to the direct manipulation of bits from other registers, such as
STRIP RESET, STRIP SC and STRIP ANALYSIS CSR. The following tables give a layout
of the bits for each of these registers.

Bits Name Access Description

31 CHIP RESET
w
r

Assert RESET signal on selected channels
Indicates that RESET signal is asserted

30 CLEAR FIFO
w
r

Clears link spy FIFO’s
Status of FIFO clear signal

29 CLEAR ERRORS
w
r

Clears link error counters
Status of link error counter reset signal

28 LINK RESET
w
r

Causes the selected links to realign and synchronize
Status of link reset signal

27 DAC RESET
w
r

Asserts the reset signal to the DAC’s (not masked)
Status of the DAC reset signal

7...0 CHANNEL MASK r/w
Reset signals are sent to all channels with bits

set in the CHANNEL MASK field

Table 2: Bit Layout for the STRIP RESET Register
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Bits Name Access Description

31 SC BUSY r Set while a slow controls transaction is in progress
INVOKE w Initiate the slow controls transaction

30 RAW r/w Set when raw data is being shifted out
29 BCO SYNC r/w Synchronize rising edge of SHIFT with BCP zero
28 BCO ZERO r/w Synchronize falling edge of SHIFT with BCP zero

26-24 LENGTH r/w Encodes the number of bits to send
23-16 CHANNEL MASK r/w Set bits enable the channels to receive SCIN
15-13 READ SELECT r/w Select channel from which to receive SCIN
12-10 INSTRUCTION r/w Slow-controls register instruction
9-5 ADDRESS r/w Slow-controls register address
4-0 CHIP ID r/w Target chip ID

Table 3: Bit Layout for the STRIP SC Register

Bits Name Access Description

31 DONE r Indicates that the terminal BCO count has been reached
30 CLEAR r/w Resets all counters - not self clearing

18...16 CHANNEL SELECT r/w Selects strip sensor channel for analysis
15...11 TERM COUNT BIT r/w log2 of BCO count at which to stop analysis
8...4 SET NUMBER r/w Set number to match in data stream
3...0 STRIP NUMBER r/w Strip number to match in data stream

Table 4: Bit Layout for the STRIP ANALYSIS CSR Register

Should the operations on these registers made easier and more readable in the future, the
PxSuite would perform a lot better than it actually is.
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