
1 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

2 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

Index

1. Introduction 3

2. Cloud computing 4

2.1. Grid computing 4

2.2. Models of cloud services 4

2.3. The cloud project 5

3. Benchmarking 6

3.1. ̅bar_gensim 6

3.2. Hepspec06 7

3.3. Bandwidth throughput tests 7

4. Autmation of the process 8

5. Obtained results 9

5.1. ̅bar_gensim 9

5.2. Hepspec06 10

5.3. Bandwidth throughput tests 11

6. Closing remarks 15

7. Acknoledgements 16

3 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

1. Introduction

This report deals with my work at the Computing Division carried out during the Fermilab summer

internship 2015 period. In particular, my aim was to contribute to the expansion of the current

capabilities of the Cloud Project.

As of the day of my arrival at Fermilab, the FermiCloud infrastructures and its management

services were already running, and the project was undergoing through the phase of establishing

production services and amplifying the system capabilities in order to match users need and

request. One of the main focuses during my internship period has been to take part in the

realization of a cloud service capable or running full length CMS jobs. While pursuing this

objective, a part of the necessary studies was the benchmarking of both local and commercial

cloud resources which is the job that I carried out.

This involved analyzing the proficiency of various machine at running pieces of CMS jobs, and the

study of the bandwidth throughput from and toward various available storages, in order to decide

the best way to handle the data needed and produced from the jobs.

During my work, I wrote various scripts with the aim of automatizing the process of launching

virtual machine on the cloud, executing the benchmarks and cropping the resulting data.

This was a necessary step, especially regarding the bandwidth benchmarks that needed to be

synchronized in order to accurately reproduce what might be the amount of data transfer

required for a CMS job.

4 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

2. Cloud computing

Before introducing the concept of cloud computing, it is necessary to expand on one of its

predecessor: grid computing, known also as distributed computing.

2.1. Grid Computing

Grid computing is the collection of computer resources in a unified infrastructure where all the

machines will work in order to achieve a common goal. This system requires for the usage of

complete computers, connected by a conventional network interface, allowing for the

harnessing of unused resources.

A grid, such as FermiGrid, will present multiple worker nodes, each specialized in a particular

task. This represents a major difference when compared to cluster computing, where each

node is set to perform the same task.

One of the disadvantages of a grid is the fact that the nodes may not have high-speed

connection between each other, due to the grid’s intrinsic nature of having a heterogeneous

geographical distribution of resources.

Cloud computing improves on Grid computing, by adding an on-demand resource provisioning and

a layer of virtualization, that can operate on different scales, from software, to OS. The users can

access the cloud through the use of a client, known as thin client, which depends heavily on a

server set on a different computer.

This results in advantages, for both the host and the users of a cloud system. The first will be able

to maximize the efficiency of his facility and the achievement of an economy of scale, while the

users will be able to pay only for the services they need on an on-demand basis. This represents a

versatile system that companies can use to expand their computing power only when needed with

no upfront commitment of money.

2.2. Models of cloud services

2.2.1. Software as a Service

Also known as on-demand-software, the SaaS model provides on a pay-per-use basis the

access to software and databases to its users.

On the host ends there will be a load balancer, tasked with the distribution of the workload

across available VMs, while the user will see a single access point to the provided service,

greatly simplifying the running of a task on its end.

This model constitutes one of the biggest shares of the cloud market, since it enables its

users to access software from a third party, through interfaces as simple as a web browser.

Examples: Google Apps, Salesforce, Workday.

2.2.2. Platform as a Service

In the PaaS model, the cloud provider delivers a computing platform to his users, which

generally includes an OS and all the required tools for programming. This allows for a

reduction in complexity that software developer will have to deal with in higher level

5 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

programming, while also outsourcing the costs and manpower required for the

maintenance of the hardware.

Examples: Microsoft Azure, Google App Engine

2.2.3. Infrastructure as a Service

The IaaS model provides its user with access to virtualized or bare metal machine within

the cloud, allowing for the acquisition of extra computing power without having to buy

new hardware. This is especially in systems, where the computing power required over

time will present spikes.

Examples: FermiCloud, Amazon Web Services (AWS), Google Compute Engine

2.3. The Cloud Project

One of the already achieved aims of the FermiCloud project was to establish a scientific private

IaaS cloud at Fermilab, in order to add to the already present functionalities of the FermiGrid.

This allows for the virtualization of worker nodes, and sending Virtual Machines as jobs, within

the cloud, while also permitting an on-demand allocation of resources, without the need of the

intervention of a system administrator. This model is more dynamical when compared with

other virtualization utility used on the Grid, in the fact that VMs comes into being at the

moment of their request, and cease to exist when the job is done, freeing the resources back

into the cloud.

Another of the aims of the project is to realize a facility that can be interoperable with other

large cloud-based user and facilities, making it possible for the sharing of resources between

scientific institutions while they are not being employed by the main host.

The FermiCloud can be further improved by switching from a private cloud to a hybrid one

through the combination with a commercially available cloud like AWS. This would allow for an

on-demand acquisition of resources when confronted with workloads that exceed the current

capabilities of the system, a technique known as cloud bursting.

6 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

3. Benchmarking

Benchmarking consists in running a series of programs and application on a machine, either bare

metal or virtual, in order to assess its capabilities, with the aim of establishing a metric that can be

used to compare different hardware.

This can be achieved by running the same sets of programs on different machine and compare

either the time it took for the whole benchmark to complete, or the percentage of job completion

(or other related parameters) the machines were able to reach in a fixed amount of time.

In order to compare hardware on a global scale, generic benchmarks are used. This are meant to

run on a wide variety of architectures, and to test a wide range of features that can be the CPU

capabilities under stress, the disk or RAM input/output per seconds (iops), the capabilities of the

compiler, the bandwidth and so on. This list represents a set of features that allows the

comparison of resources on a generic scale.

Generic benchmarks are important when buying new machine that most likely won’t be running a

single kind of job, but a wide variety, since having high generic specs will means that the system is

more versatile.

Unfortunately, generic benchmarks do not always represent accurately the kind of workload that

the user wishes to run and for this reason specific benchmarks can also be used. Their purpose is

to emulate the whole workload imposed by the job or just part of it. This gives results that are

more suited for determining which system will be the best for that particular application. Doing so

is especially important when dealing with an on-demand service, since machines are allocated

only for the duration of the job where the most suited one can be chosen on a case by case basis.

Having benchmark data is also fundamental when compiling a business plan in order to get

funding, where the developer has to guarantee to be able to provide at minimum the

performances required by the stakeholder.

During my work, both generic and specific benchmarks have been used, in order to establish a

metric to compare machines on a global scale, while also determining which one of them would be

the best at running a full length CMS job, by taking into account the efficiency over price.

Here are the benchmarks that have been used, some of them being standards, while others being

custom made:

3.1. ̅bar_gensim

The gensim benchmark simulates one of the initial phases of a CMS job and consists in the

generation of 150 ttbar events. The test can generate up to 100GB of files that are meant to be

used in other steps of the jobs, such has the reconstruction phase.

The results of the benchmark are given in ttbar/s and, the higher the value, the better the

machine will be at running a CMS job.

7 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

3.2. Hepspec06

SPEC (Standard Performance Evaluation Corporation) produced a portable collection of

benchmark with the focus on compute intensive performances, meaning that the CPU,

memory architecture and compilers of the system will be put under test.

The hepspec06 is a subset of the SPEC benchmarks collection defined by the all_cpp command.

Its purpose is to analyze the integer and floating point performances of the c++ compiler of the

system. It was chosen because the components tested by this benchmark are similar to those

used in a CMS job, which should be reflect on the comparison of hepspec and gensim results.

These collections are widely used across the globe, presenting a great repository of results

from a great variety of hardware, allowing their comparison through the SPEC parameter,

which is obtained by calculating the ratio of a standard value divided by the running time for

each benchmark of the package and then calculating the geometric mean of all these values.

3.3. Bandwidth throughput tests

During the execution of a CMS job, data will need to be stored and read to and from various

sources of storage. The speed at which these operations are carried out can greatly impact the

efficiency, and therefore the cost, of the job. For this matter, the Cloud Project has to

guarantee a minimum of bandwidth in order to satisfy the needs of a full CMS job. With this in

mind, various custom benchmarks had to be written, in order to assess the bandwidth up and

download throughput with respect to the following storage systems: Amazon S3, FermiGrid,

cmseos.

The first one is of great interest for storing the pileup file produced from the results of the

gensim phase and passing them to the reconstruction one. The AWS Command Line

Interface(CLI) was used for the transfer of the files from a local disk to an S3 bucket.

The other storage systems represent 2 of the potential grid system to use in order to store the

data produced by a job. FermiGrid use a gridftp protocol, and its nodes could be accessed

through the use of the globus-url-copy command, while cmseos required either the XRootD or

SRM (Storage Resource Management) libraries to be accessed.

In both cases the request were being sent to a server hosting a dCache that would distribute

the requests through various nodes.

Within both libraries was the option to transfer files using parallel streams. A case study of the

effect of the number of parallel stream and other parameters can be found in chapter 5.

The results are reported as total throughput per number of simultaneous uploads, in function

of the number VMs that were running the benchmark simultaneously.

8 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

4. Automation of the process

Having to run multiple benchmarks on a wide variety of machines can be easily prone to the

occurrence of human errors if carried out manually. This prompted me to automatize the

benchmarking process through the writing of various .sh scripts. This also allowed for the

execution of a greater number of benchmark that it would’ve been if all the operation were to be

carried out manually. The automation of the process was also mandatory in the later phase of the

work where, in order to accurately simulate the data transfer of a CMS job, all of the VMs

executing the bandwidth benchmark had to be synchronized with each other.

The main script produced is the aws_launch_benchmark.sh capable of launching the requested

AWS instances, initialize them and transfer and run a run-benchmark_name.sh script capable of

setting up all the needed files and running the benchmark on the VM sequentially, or synchronized

if needed. A series of checks and a README file have been introduced in order to make the script

as user friendly as possible, so that it could be easily used by other users as well.

One of the other scripts is the crop_results.sh, capable of collecting the results data from all the

VMs that were instantiated during the last run of aws_launch_benchmark.sh, while also doing

some preliminary analysis on it, so to present the data in a more ready to use format.

9 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

5. Obtained results

This chapter is focused on presenting the obtained results and discussing their analysis.

5.1. ̅bar_gensim

The gensim benchmark was run on a wide variety of AWS and local machine testing for both

single core and all cores performances. Part of the results can be observed in Table 1.

Table 1: Collecion of results obtained with the gensim benchmark from AWS instances

One of the problems of the benchmark that arose from the data analysis is the amount of

efficiency loss when running the All cores test being close to 45%. The reason for such a high

value is the fact that this benchmark, when testing more than one core, is not using not

launching a multithreaded process, but many single-threaded ones. This wasn’t a matter of

concern, because an actual CMS job should make proper use of multithreading.

At the end, the gensim results were confronted with AWS on-demand pricing in order to

obtain an efficiency/cost parameter.

Figure 1: Charts of the total ttbar and ttbar/cost values for every AWS instance analyzed

run ttbar/s per core total ttbar/s Eff. Loss N° CPU RAM(GB)

All cores 0,0139 0,0557

1 core 0,0265 0,0265

All cores 0,0139 0,111

1 core 0,0261 0,0261

All cores 0,0201 0,0806

1 core 0,0354 0,0354

All cores 0,0191 0,153

1 core 0,0354 0,0354

All cores 0,0198 0,317

1 core 0,0353 0,0353

All cores 0,0153 0,0611

1 core 0,0293 0,0293

All cores 0,0153 0,122

1 core 0,0291 0,0291

All cores 0,0149 0,239

1 core 0,0295 0,0295

4 15

m4.2xlarge 0,459 8 32

m4.xlarge 0,431 4 16

m3.2xlarge 0,470 8 30

c3.2xlarge 0,475 8 15

c3.xlarge 0,478 4 7,5

m4.4xlarge 0,438 16 64

c3.4xlarge 0,494 16 30

m3.xlarge 0,475
run ttbar/s per core total ttbar/s Eff. Loss N° CPU RAM(GB)

All cores 0,0228 0,091

1 core 0,0412 0,0412

All cores 0,0226 0,181

1 core 0,0395 0,0395

All cores 0,0205 0,327

1 core 0,0402 0,0402

All cores 0,0151 0,060

1 core 0,0273 0,0273

All cores 0,0150 0,120

1 core 0,0269 0,0269

All cores 0,0146 0,233

1 core 0,0271 0,0271

All cores 0,0141 0,450

1 core 0,0269 0,0269
cc2.8xlarge 0,478 32 60,5

r3.4xlarge 0,463 16 122

r3.2xlarge 0,443 8 61

r3.xlarge 0,448 4 30,5

c4.4xlarge 0,491 16 30

c4.2xlarge 0,427 8 15

c4.xlarge 0,446 4 7,5

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.5000

ttbar/s total

ttbar per $/h

10 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

The values reported in Figure 1 are not the only ones that will be considered in choosing the

desired instance, but will need to weighed together with many other parameters mostly

dependent on considerations over the spot market.

5.2. hepspec06

As mentioned in chapter 3, the results for the hepspec06 benchmark should be similar to

those reported for the gensim one. This can be seen if comparing the results presented in the

past paragraph with those in Table 1 and Figure 2.

Table 2: Collecion of results obtained with the hepspec06 benchmark from AWS instances

This benchmarks were run in a fashion similar to that of the gensim one, where All cores run were

executed by launching many single-threaded processes. As expected, the efficiency loss values are

comparable to those of the gensim benchmark.

Figure 2: Charts of the total HS06 and HS06/cost values for every AWS instance analyzed

As it can be observed from Figure 2, even if the scale is different, the shape of the graph closely

replicates that of the gensim benchmark, result that was expected from how the hepspec06 was

chosen.

run hepspec per core total hepspec Eff. Loss N° CPU RAM(GB)

All cores 14,29 57,15

1 core 24,48 24,48

All cores 12,20 97,64

1 core 23,93 23,93

All cores 16,13 64,53

1 core 28,13 28,13

All cores 15,14 121,13

1 core 27,53 27,53

All cores 13,53 216,56

1 core 27,80 27,80

All cores 14,86 59,42

1 core 26,79 26,79

All cores 14,73 117,82

1 core 27,58 27,58

All cores 13,23 211,65

1 core 27,97 27,97

m3.xlarge 0,416 4 15

m4.2xlarge 0,450 8 32

m4.xlarge 0,426 4 16

m3.2xlarge 0,490 8 30

c3.2xlarge 0,466 8 15

c3.xlarge 0,446 4 7,5

m4.4xlarge 0,513 16 64

c3.4xlarge 0,527 16 30

run hepspec per core total hepspec Eff. Loss N° CPU RAM(GB)

All cores 17,46 69,86

1 core 28,74 28,74

All cores 16,55 132,39

1 core 31,17 31,17

All cores 14,80 236,81

1 core 31,32 31,32

All cores 15,51 62,03

1 core 26,51 26,51

All cores 14,22 113,72

1 core 26,15 26,15

All cores 12,68 202,87

1 core 26,51 26,51

All cores 11,21 358,84

1 core 24,36 24,36

c4.2xlarge 0,469 8 15

c4.xlarge 0,392 4 7,5

r3.2xlarge 0,456 8 61

r3.xlarge 0,415 4 30,5

c4.4xlarge 0,527 16 30

cc2.8xlarge 0,540 32 60,5

r3.4xlarge 0,522 16 122

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

HS06 total

HS06 per $/h

11 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

5.3. Bandwidth throughput tests
The first thing to be tested was the bandwidth throughput from Amazon S3 storage, to

c3.2xlarge instances.

Figure 3: Download bandwidth throughput test from Amazon S3 to c3.2xlarge instances

What was observed from the results shown in Figure 3 is the fact that the only limit imposed on

the total throughput, was the maximum bandwidth of 1Gbit/s per c3.2xlarge instance. No

degradation of this value was observed with the increase in number of simultaneous VMs and

uploads.

The download data was the one of greater interest, since the intent is to use S3 to read pileup

files during the reconstruction phase.

Successively the upload bandwidth throughput toward FermiGrid was tested, in order to

determine the best way to store the final results.

Before doing so, a study of the effect of the parameters of the globus-url-copy and xrdcp

commands had to be done, in order to determine the best number of parallel streams to use

when uploading files.

To achieve this, the total throughput in function of the parallelism was analyzed, while

simultaneously uploading 20 files from 1 VM.

1 5 25

0

0.5

1

1.5

2

2.5

3

Simultanous VMs

To
ta

l T
h

ro
u

gh
p

u
t

[G
B

/s
]

S3_download

1 sim downloads

10 sim downloads

100 sim downloads

12 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

Figure 4: Study of the effect of the parallelism parameter over the total throughput

The results of this study (Figure 4) show that for values of parallelism over 3-4, the total

throughput tends to stabilize, making it not worth to increase the value of the parameter any

further.

It is important to not take exceedingly high value for the parallelism in order not to saturate

the dCache system, when running full scale jobs that could open connection in the order of the

thousands.

For the globus-url-copy command, a similar study had to be carried out for the concurrency

parameter, which represent the number of TCP connection to use simultaneously.

Figure 5: Study of the effect of the concurrency parameter over the total throughput

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10 12 14 16

Th
ro

u
gh

p
u

t
[G

B
/s

]

parallelism

0 5 10 15 20 25

0

0.02

0.04

0.06

0.08

0.1

0.12

concurrency

Th
ro

u
gh

p
u

t
[G

B
/s

]

13 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

The results shown in Figure 5 are similar to those of Figure 4, and so is their analysis. It was

determined that in order to maximize the throughput, while keeping the number of

connections to a minimum, values of concurrency between 5 and 10 should be used.

During further tests with more VMs, it was shown that high values of concurrency and

parallelism where causing the failure of 4 to 5% of the uploads, with no worthwhile increase in

the total throughput, thus it was determined to use parallelism=4 and concurrency=5 for the

study of the total throughput using more simultaneous VMs.

Figure 6: Total throughput analysis of the globus-url-copy command toward the fndca1 server

Figure 7: Total throughput analysis of the xrdcp command toward the cmseos server

1 5 10 25

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

Simultaneous VMs

To
ta

l t
h

ro
u

gh
p

u
t

[G
B

/s
]

globus-url-copy to fndca1

1 sim uploads

5 sim uploads

10 sim uploads

20 sim uploads

1 5 10 20 25

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

Simultaneous VMs

To
ta

l t
h

ro
u

gh
p

u
t

[G
B

/s
]

xrdcp to cmseos

1 sim uploads

5 sim uploads

10 sim uploads

20 sim uploads

14 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

The results shown in Figure 6 and Figure 7 demonstrate that a total bandwidth of 6 to 7 Gbit/s

can be achieved, a value much higher than the 3Gbit/s require for a CMS job, that was

calculated with the data available up to know.

This shows the capability of the system of handling the data transfer required, this satisfying

one of the requests of the stakeholders.

Something that can be noted from the charts, is the unexpected decrease of the 10sim uploads

throughput value when reaching 10 VMs. This is due to some of the uploads getting queued by

the dCachce system and not executing in sync with the other, with an end result of a lower

throughput for the 10 sim and an higher for the 20 sim. This effect was not eliminated, since

the tasks of a CMS jobs will be launched sequentially, and it is expected that their data transfer

won’t be synchronized, but spread across the whole duration of the process.

15 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

6. Closing remarks

During the course of my work at Fermilab I acquired knowledge on cloud computing and its use in

the scientific environment, and in particular I learned on how to work with the local FermiCloud

and the public service of AWS. I also greatly improved my skill in writing bash scripts on a Linux

environment and learned the usage of the AWS CLI and other homemade tools. I also gained

knowledge on the usage of Kerberos certificates and identification, in order to set my credential or

those of the VMs in the Fermilab environment.

Being my first working experience I also learnt how to be part of a group and carry out a work

meant to be used in conjunction with the job of many other people.

During my stay, I was able to carry out all of the required jobs, by first running the gensim and

hepspec06 benchmarks on public and local cloud resources, so to establish a metric to compare

them in order to help decide the best solution for carrying out a CMS job. Afterwards I proceeded

to write and execute bandwidth benchmarks, in order to assess if the capabilities of the system

would fulfill the requirement of the stakeholder, and be able to run the jobs at maximum speed,

with no delay due to the data transfer maximum throughput.

The data I acquired will have to be used in conjunction with the results from other studies of the

spot market in order to decide the best solution for running the job with the best efficiency over

cost ratio possible.

16 Final reports – 2015 Summer Internship – Davide Grassano
Benchmarking of public and local Cloud resources

7. Acknowledgements

I want to thank my family that allowed me to be here at Fermilab by giving their support through

all of the required processes.

I want to thank Simone Donati, Giorgio Bellettini and Emanuela Barzi, as the organizers of this

Summer Internship and all of the Fermilab personnel that worked hard in order to allow me and

the other summer students to have this wonderful experience.

I also want to thank the member of the computer division, and in particular my supervisor

Gabriele Garzoglio and co-supervisor Steven Timm, for constantly guiding me through my work

and the process of acquiring the knowledge to carry it out.

