Integrating the Oculus Rift into CMSSW’s Fireworks in ROOT

Kai Wisser
South Dakota School of Mines and Technology
Adyvisor:
Souvik Das - University of Florida
Science Undergraduate Laboratory Internship
Fermilab 2015

Abstract

By utilizing recent advancements made in 3D technology, CMS is hoping to incorporate it into
CMSSW to view events up close and personal. The Oculus Rift is the advancement that will take
CMS there. However, it must first be integrated into the ROOT language to be brought into
CMSSW. Several functions must be initialized in ROOT: stereo rendering, head tracking,
distortion correction, and position prediction. Stereo rendering is accomplished by modifying
ROOT to bring forward the draw stereo functionality of OpenGL in TGLViewer and
TEveViewer. After which, CMSSW is modified to pull those changes into its classes that are
inherited from TGLViewer and TEveViewer. Then by modifying the class that controls
Fireworks 3D tower view, we can create a stereo view of the 3D tower compatible with the
Oculus Rift. With the stereo view accomplished, the project can move on to head tracking,
distortion correction, and position prediction. Head tracking will be accomplished by using the
Oculus’ sensors to track motion and then replace mouse movements with head motion.
Distortion correction utilizes Brown’s distortion model to cancel out a pin-cushion distortion and
chromatic aberration by applying a barrel distortion. Position prediction will be accomplished
through frame sampling, gathering position vector data to derive a velocity vector to determine
the next frame to be rendered.

Introduction
Oculus Rift

The Oculus Rift consists of a headset that utilizes two 8x magnifying lenses to create the illusion
of depth and immersion by combining a stereo rendering of an image then magnifying it to fill
the user’s entire field of view. Head tracking is an important component of the Oculus as it
creates the illusion of immersion.

While coding for the Oculus Rift in ROOT is new and uncharted territory, many developers have
coded simulations and games for the Oculus. To serve this community of developers, an
Application Programming Environment (API) with a basic Developer’s Guide has been released
as well as tutorial pieces of code to learn the class structure and function of the Oculus. The API
and the tutorial pieces of code are written in C++.

ROOT has its own OpenGL-based event display system that is developed for High Energy
Physics experiments, and instead of bypassing a well-tuned system we decided to modify it to
mirror the rendering functionality of the Oculus API. Throughout the project our objectives are
reached by using the Oculus API and Developer’s Guide as a loose map of sorts. (1)

Purpose of Integration

By integrating the Oculus into ROOT, events from data collected by the CMS experiment at the
LHC can be viewed in an immersive environment. This integration can offer publicity, research,
and educational opportunities for the CMS collaboration. This technology can be used to show
the public the inner workings of the CMS detector to get them excited about the work being done
there. Researchers can use this technology to view their events of interest from more intimate
viewpoints to gain a better understanding of what’s going on during the event. This
understanding can then be passed on to graduate students by using this immersive technology to
educate then on the composition of different decays.

Methods
Stereo Rendering

Stereo rendering within ROOT requires the integration of ROOT, OpenGL, CMSSW, and the
Oculus API. This integration allows for the stereo functions from OpenGL to be implemented by
using the flag:

Boot t quad buf=kTRUE
This flag was raised in TGLViewer and TEveViewer within the source code of ROOT to allow
the SetStereo function to draw images for the left and right eyes side-by-side as expected by the
Oculus. As proof of principle, this functionality was incorporated into a toy piece of code called
CMSGeometry.cc to render a stereo view of the CMS detector. The rendering included an offset
to account for inter-pupillary distance and the parallax between our two eyes. Without head
tracking, this code was able to be pair with the Oculus and create an image of the CMS detector
with depth filling the entire field of view.

Having demonstrated to ourselves the possibility of projecting the 3D CMS detector into the
Oculus, we began the project of projecting CMS event data into the device. This required
integration with CMSSW that allows the use of the Oculus to view events in Fireworks. To do
this, the functions that were brought into ROOT from OpenGL, were brought into the Fireworks
Core. The SetStereo function was brought forward into FWTEveViewer.cc by:
m_fwGlViewer->SetStereo(true, false);

Within FWTEveViewer.h, a flag was pulled through from FWTGLViewer by:

FWTGLViewer* SpawnFWTGLViewer(bool stereo=false);
Due to the CMSSW structure, the modifications had complexities arise. Since CMSSW wrapped
around ROOT, the version of ROOT modified by a patch had to be rebuilt in the CMSSW area
from a GitHub repository. CMSSW is then rebuilt connected to the new modified ROOT.

Head Tracking

Head tracking with the Oculus in ROOT required ROOT to create an object for the head
mounted display (HMD) and then input data corresponding to the Oculus Rift’s movements. To
do this, a simple code was written to test methods of connecting to the Oculus and outputting an

orientation for the user’s head. This test code is as follows:

System: :Init (Log::ConfigureDefaultLog (LogMask All));

Ptr<DeviceManager> pManager = *DeviceManager::Create();

Ptr<HMDDevice> pHMD =
*pManager->EnumerateDevices<HMDDevice> () .CreateDevice () ;

if (pHMD)

{
std: :cout<<"HMD attached. Good to go."<<std::endl;

Ptr<SensorDevice> pSensor = *pHMD->GetSensor();
if (pSensor)
{
SensorFusion fusionResult;
fusionResult.AttachToSensor (pSensor) ;

// Get the orientation quaternion to control view
float x 0ld=0, y 0ld=0, z 0ld=0, w_o0ld=0;
while (true)

{

Quatf g = fusionResult.GetOrientation();

if (fabs(g.x-x 01d)>0.01 || fabs(g.y-y 0l1d)>0.01 ||
fabs(g.z-z 01d)>0.01 || fabs(g.w- w_01ld)>0.001)

{

//Output the corresponding rotation quaternion
std::cout<<"Orientation quaternion: axis = "<<g.x<<"1i +
"<Lg.y<<"y 4+ "<<g.z<<"k. rotation = "<<g.w<<std::endl;
float yaw=0, pitch=0, roll=0;
g.GetEulerAngles<Axis Y, Axis X, Axis Z>(&yaw,
&pitch, &roll);
//0Output corresponding Euler angles
std::cout<<"yaw = "<<yaw<<", pitch = "<<pitch<<"
roll = "<<roll<<std::endl;
//Rotation Conversion(q.x, gq.y, 4.z, J.w);

x old=qg.x;

y _old=qg.y;
z old=qg.z;
w_old=qg.w;

Connect the Oculus HMD to ROOT’s Event Handler. Patch into code controlling the camera
orientation and mouse movements for the 3D Tower view. Figure 4 illustrates the operations of
Euler angles in the head tracking of the Oculus Rift

Distortion Correction

The lenses of the Oculus Rift cause two types of distortions in the image seen by the user. The
first is a pin-cushion distortion, which can be seen in Figure 1. It can be seen that pin-cushion
distortion causes the corners of the image to be more spread out than the center that is “pinned
in”. The second type of distortion is called chromatic aberration, displayed in figure 2.
Chromatic aberration is due to the lenses bending different wavelengths of light at different
angles to cause a blue/red fringe on the edge of rendered objects. Both these distortions can be
fixed using Brown’s distortion model with a positive coefficient. In each rendered frame, the
Brown'’s distortion model is applied to each color channel separately to create a reverse
chromatic aberration and apply a barrel distortion, which can be seen in figure 3, to fix both the
pin-cushion distortion and chromatic aberration at once for every frame. Brown’s distortion
model is as follows:
xu =xd +(xd —xc)(K11"2 +K2r*4 +...)+
oP1(r"2 +2(xd —xc)"2)+2P2(xd —xc)(yd —yc)o(1+P3r"2 +...)

yu =yd +(yd —yc)(K1r"2 +K2r"4 +...)+
02P1(xd —xc)(yd —yc)+P2(1r"2 +2(yd —yc)*2)o(1+P3r*2 +...))
where:
(xu, yu) = undistorted image point,
(xd, yd) = distorted image point,
(xc, yc) = centre of distortion,
Kn = Nth radial distortion coefficient,
Pn = Nth tangential distortion coefficient,
r = ((xd —xc)"2 +(yd —yc)"2)"0.5, and
... = an infinite series
Kn and Pn are the two coefficients that will be positive to create a barrel distortion. (2)

Results

CMS Geometry Stereo Rendering

The stereo rendering of the CMS detector accomplished by integrating a patch into
CMSGeometry.cc provided a proof of principal on the operation of Matevz.patch in ROOT. The
integration resulted in a stereo rendering of the CMS detector that when viewed through the
Oculus Rift, merges to one image with depth.

The final pupil distance used within the program was the average, 64mm, so the final stereo
offset used was 32mm. As for the parallax, in order for the program to focus the user’s view on
the center it was set to 0.5. This means that half of the image will appear to pop out of the screen
and half will appear to recede into the screen

Fireworks Stereo Rendering

Once rendered in stereo view, the 3D tower view could be seen through the rift with depth and
the correct parallax after applying the final value of 0.5 for the stereo parallax. The final view for
CmsShow can be seen in Figure 5.

Head Tracking

The basic ROOT code successfully registered with the connected Oculus HMD to input position
data. By implementing a print command we could view the inputted quaternions as well as the
Euler angles that they were converted into to read their ‘virtual position’ from.

Discussion

The stereo rendering within Fireworks is final and will undergo little to no modifications in the
future. However, while head tracking is in reach with basic ROOT, it is incomplete and has yet
to be implemented and executed by Fireworks.This will have to be accomplished by replacing
the mouse movements that are registered to change the camera orientation with head movement
inputted from the Oculus.

Once head tracking is implemented and frame’s are changing based on position, distortion
correction will be incorporated in the manner described previously. Distortion correction via

Brown'’s distortion model will be improved upon several times before being finalized as the
parameter will have to be adjusted to get a cancellation of distortions.

Acknowledgments
Alja Mrak Tadel, Matevz Tadel, Patrick Gartung

s
HE

Figure 1: Pin-Cusion Distortion (4) Figure 2: Chromatic Aberration (5)

] |
JENN R B

| | |
‘1'7——2#——(——‘;'“

Figure 3: Barrel Distortion (3) Figure 4: Euler Angle Operation (1)

aL T I =

Figure 5: Final Fireworks Stereo View

Works Cited

(1) Documentation, WWW Document,
(https://developer.oculus.com/documentation/pcsdk/0.4/concepts/dg-sensor/).

(2) J.P. de Villiers, F.W. Leuschnes, and R. Geldenhuys, Centi-pixel accurate

real-time
inverse distortion correction, WWW Document,
(http://researchspace.csir.co.za/dspace/bitstream/10204/3168/1/De%20Villiers 20
08.pdf).

3) Optical aberration, WWW Document,
(https://en.wikipedia.org/wiki/Optical aberration).

(4) Pincusion distortion, WWW Document,
(https://commons.wikimedia.org/wiki/File:Pincushion_distortion.svg).

(%) P. Johnson, Binocular Glossary, WWW Document,
(http://www.opticsreviewer.com/binocular-glossary.html).

