PARTI meeting
Fermilab, 08-24-2011

Third integer resonance extraction
assisted by RF knock-out (RFKO)

Speaker: Alexey Kochemirovskiy, MIPT

Supervisor: Vladimir Nagaslaev, AD/ Antiproton source department



Mu2e experiment

MuZ2e is a future project of Fermilab, which is planned to be launched in 2017-2018.
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Protons from The proton' beam creates
Fermilab pions, which decay into

u+(4,2)=e +(4,2) S —

Charged Lepton Flavor Violation (CLFV) is not explicitly forbidden in the Standard Model (SM),
but still remains unobserved.

Why this is important? What'’s the difference?
Detection of muon to electron conversion is an A muon that does not follow the traditional weak-force
unmistakable signal of new physics. decay pattern into a lighter electron and two neutrinos,

but converts wholly into an electron.



Proton acceleration for Mu2e experiment

What'’s the problem?

- The Debuncher will operate with beam intensities of 3x10712

- Presence of large space charge and momentum spread

- Strict requirements: spill uniformity and low particle losses

particles, = four orders larger than its current value

Third integer resonance extraction

* Is used to extract particles during a large number of turns

- Betatron tune has to be close to the resonance condition - N/3

Radio-Frequency knock-out (RFKO)

We are using RFKO as a feed-back tool
for the fine control of the spill rate.
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Plans

We should develop a concept of resonance extraction which meets the
experimental requirements (uniformity and low beam losses)

Personal goals

0. Get acquainted with principles of modern accelerator experimental physics

1. Create a numerical model of resonance extraction using Mathcad software

2. Explore different models of controlling the extraction using RFKO

3. Determine optimum strategies for the RFKO FM and AM.



Third integer resonance modeling
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RF simulation

RF kicker .
Calculation
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v=— Y = \/?(x + Z—X) Normalized coordinates
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RF signhals

Fourier spectrum of noise modulation
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Beam size growth

Dipole oscillations
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Analogy with Brownian motion:

X~VA+B+t A —initial size of the beam

B — growth rate



Growth rate
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Optimal strategy

Comparison of 2 modulations
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The spill rate for “narrow” modulations is significantly lower.

Making the modulation wider than tune spread doesn’t look efficient.




Summary

Conclusions

1. Both noise and linear modulation with shuffle perform fast increase
in spill rate if used accordingly with optimum strategy

2. The optimum strategy is when modulation bandwidth is taken
roughly equal to the tune spread in a beam

3. Further research is needed

Future perspectives

1. Finish the model optimization
2. Take space charge effects into account
3. Combine RF modulation and 3™ resonance modulation



