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Abstract

In order to properly determine the dose given to a patient in the Neutron Therapy Facility at Fermi National

Laboratory, a computer program that simulates the dose is used. This program currently uses a �tting of the

dose that has areas of poor �t to the data. A new algorithm that more accurately models the dose has been

achieved. This new algorithm is able to determine the dose more precisely in all areas.

1 Introduction

The use of particle beams to treat cancer was proposed by Dr. Robert Rathburn Wilson, �rst director of Fermilab,
in 1946[1]. Particle accelerators, like Fermilab's Linac, are used to create the beam of high energy particles, which
is then directed towards cancerous tissue. The beam of particles is used to kill the cancerous cells by ionizing
molecules and creating irreparable damage. Protons, photons and electrons, which are popularly used in radiation
therapy, undergo Coulombic interactions with the electrons of molecules and atoms, ionizing them by breaking
chemical bonds. Neutrons, which are electrically neutral, interact directly with nuclei and can change the actual
atom they a�ect. Cells have natural mechanisms to repair broken chemical bonds, but if the chemical itself changes
the damage is irreparable. Also, neutrons are referred to as indirectly ionizing radiation since the interactions they
have with atoms causes the production of other types of radiation, which then cause a large amount of subsequent
ionization[2]. In general, neutrons are better at �ghting radioresistant tumors than other types of radiation due to
the nature of their interaction with atoms[3]. Because of this, neutron therapy is an attractive alternative to the
more popular therapies.

In radiation therapy it is necessary to be able to control the position and size of a beam in order to e�ectively
treat the a�ected area of a patient, while minimizing the damage on healthy tissue. In the case of protons and
electrons this can be easily achieved due to the electrical charge of the particles being used. Magnetic �elds can
be used to precisely direct the beam of particles in order to attack the cancerous cells. This, however, cannot be
done with neutrons since they're neutral. Instead, a collimator has to be used in order to control the region being
irradiated. The basic idea of collimators is to put a physical barrier to the neutrons so that the beam comes out of
a well-de�ned area. Collimators are made out of a thick material with a hole of a certain size through which the
beam of neutrons comes out. Collimators are made out of di�erent materials like steel and cement that are able to
block neutrons in order to narrow the beam. Depending on the size and shape of the a�ected region of the patient's
body a speci�c collimator (with an aperture of a particular size and shape) is used.

In the Neutron Therapy Facility (NTF) the current con�guration uses a series of cylindrical cement blocks
with rectangular apertures in the center from where the neutron beam comes out. Various rectangular openings of
di�erent sizes can be used to change the beam outline as needed for the individual case. In order to further adjust
the beam to match the a�ected area, triangular and rectangular steel blocks can be placed inside the rectangular
opening. The patient is then placed at a certain distance (which can be precisely controlled) away from the collimator
with the beam centered on the a�ected area (see Figure 1.1).

The collimator is able to control the amount of radiation on the plane perpendicular to the trajectory of the
beam, but it cannot control the amount of radiation in the direction of the beam trajectory. That is, if a person
is placed with his front to the beam, then the collimator is able to control the amount of radiation from side to
side (towards or away from his left arm), denoted as the x axis, and up and down, denoted as y axis (towards
or away from his head), but it is not able to control the amount of radiation he receives as a function of depth
(towards his back), which we denote as z axis (see Figure 1.2). In order to control the z axis, the patient is rotated
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Figure 1.1: Patient and therapist in the NTF treatment room showing the con�guration of the facility. The
cylindrical cement piece in the therapist's hand is one of the collimators, showing how it can be changed depending
on the patient's need. Also, below the collimator it is possible to see some of the steel blocks that can be placed in
the aperture. Picture courtesy of the Neutron Therapy Facility at Fermi National Laboratory

Figure 1.2: Diagram of NTF con�guration with axes labeled, where the x axis is the horizontal axis from side to
side of the patient's body, the y axis up or down the body, and the z axis is the depth from the chest to the back
of the patient. Picture courtesy of the Neutron Therapy Facility at Fermi National Laboratory
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at di�erent sessions, with the tumor as the pivot point, in order to maximize the radiation delivered to the tumor
while minimizing its e�ects on the surrounding healthy tissue.

A computer program created at NTF is used to calculate the dose delivered to a patient. This program simulates
the dose of all the di�erent collimator con�gurations. This program was based on previous �ts of multiple data sets
and was intended to create a universal algorithm that would be able to calculate the dose for all con�gurations. In
the process of expanding this program's capability, it became evident that there were areas where the algorithm
is not very representative of the actual data. In order to create a comprehensive treatment plan it is essential
for this program to precisely calculate the dose everywhere in order to maximize the e�ects of the radiation on
the cancerous cells while minimizing the detrimental e�ects on healthy tissue. This is why it seemed necessary to
modify the program in order to rectify those particular areas to have a more appropriate �t. The purpose of this
work is to create a more appropriate algorithm to approximate the dose in the patient treatment planning at NTF.

2 Notation and Original Algorithm

For clarity, the notation used when talking about a collimator con�guration will be explained. Rectangular colli-
mators are denoted by their width and height in centimeters (in that order). So a 6x10 collimator is one that has
a rectangular opening that is 6cm wide and 10cm high. The data analyzed in this work had all been previously
recorded by earlier investigators by placing an ionization chamber inside a water tank. The water is used to simulate
the patient to understand the dose distribution inside of a person. The z value given to characterize the data set is
the distance (again in centimeters) from the surface of the water (away from the collimator) at which the data set
was taken. So when talking about a collimator data set (whether the actual data or the �tting), for example, of a
collimator that is 6cm wide, 10 high and the data set was taken 10cm away from the surface of the water, then the
notation will be `6x10 at z=10'.

The data set recorded from a 10x10 at z=10 was initially used. The dose at several points over the z=10 plane
had been previously recorded and normalized over a 32x32cm area, going from -16 to 16 cm in both the x and y
axis, taking the center of the collimator as the origin. In reality the dosimetry data set was taken over 1

8 of the area
previously discussed and then, using the symmetry of the collimator, it was extrapolated over the entire square. A
3D plot of the dose is shown in Figure 2.1, where the x and y axis are the distances from the center of the collimator
and the z is the normalized dose. This data set will be denoted as SD (Square Data). Using a piecewise �t generate
by Matlab's CFTOOL[4] a graph of the dose was created, shown in Figure 2.2 and which will be denoted as MFSD
(Matlab Fit of Square Data). The CFTOOL in Matlab is an interactive application which generates �ttings of 2D
and 3D data with a number of predetermined equations or with customized equations which the user can input.
The data set from the Original Algorithm (denoted as OA) was generated, this time over a 40x40 cm area (from
-20 to 20 cm), and plotted (using the piecewise �t), as shown in Figure 2.3. This �t will be referred to as MFOA
(Matlab Fit of Original Algorithm). The main problem with the OA becomes evident with these �gures: the corners
of the �tting have a much lower value than they should. In order to understand why this phenomenon occurs, the
OA �tting mechanism will be explained below. The objective of the present work, then, was to create a new �t
that will correct the values in the corners, while still accurately describing the other areas of the graph.

The basic idea of the OA is to create a normalized x and y �t separately, then multiply them, and �nally apply
an additional algorithm that adds the z dependence and converts the data to dose by multiplying by the appropriate
amount. The program creates the x and y �tting, both of which are 2D �ts (the horizontal axis being the position
using the center of the collimator as the origin and the vertical axis the dose), by using two parameters: the size
of the collimator opening and the z axis distance from the source. It has to be noted that the x and y axes in the
program are taken to be the two orthogonal axes of the rectangular aperture; these may not always line up with the
vertical and horizontal room axes since the collimator can be rotated by an angle with respect to the room reference
frame. The program then receives the x and y position of the desired point and calculates the dose in the x and y
axis separately, and then multiplies the two values. This is how it determines the dose in the plane perpendicular
to the beam trajectory. Finally it applies another algorithm to determine how the dose varies as a function of the
z axis, creating the �nal �t of the dose for the collimator con�guration. This �nal �t can be thought of as a 4D
graph, with the 3 spatial dimensions as the independent variables and the dose as the dependent variable.

The z dependence of the dose is accurately described by the OA, the major problem being the perpendicular
plane (x and y) dependence. The �t in this plane follows the shape of the actual data closely except for four squares
in the corners. The problem there is that the value gets a `double hit'. The idea is that in both the x and y 2D �ts
the dose value is really small. So by multiplying each other the total is made even smaller. That is why instead
of having a gradual decay, it becomes small too rapidly. But, apart from the `double hit' areas, the OA accurately
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Figure 2.1: 10x10 at z=10 dose data taken over a 32x32cm area used to analyze current and proposed �t (Square
Data -SD)

Figure 2.2: Piecewise �t of Square Data (SD) generated by Matlab (MFSD)
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Figure 2.3: Piecewise �t of Original Algorithm generated by Matlab (MFOA), with indicated 'double hit' areas

describes the dose. It is also able to account for di�erent shapes of collimators (like when steel block are placed in
the aperture) since the �t in x and y takes into account the width of the collimator at the desired point only, so
the calculation is not a�ected if the width is not a constant over all of the collimator.

3 Methods

Several �tting techniques were contemplated when trying to �nd a new algorithm for the dose. The techniques
were: creating a completely new algorithm (Section 3.1: Top-Hat Beam), modifying the process used in the OA
(Section 3.2: Picking Minimum of X and Y) and adding a separate process to the OA that �ts the fallout of the
data (Section 3.3: Gaussian Fallout and Section 4: Solution: Cauchy Fallout).

3.1 Top-Hat Beam

The �rst approach taken in order to construct a better algorithm was to analyze the general shape of the SD. The
dose has somewhat of a top-hat beam shape[5], since it has a central bulge, a fairly sharp transition and then a
fallout decay for large distances from the center. An idealized top-hat as a mathematical construction has a constant
maximum value over a �nite area and then a zero value everywhere else. A more physical top-hat will transition
with a continuous (and di�erentiable) function between the two values.

In order to analyze the 3D top-hat shape it was easier to analyze it in 2D �rst and then generalize it to 3D. To
study the 2D pro�le of the dose, a graph of the Central Transverse Pro�le (CTP) of the SD, that is, the dose as a
function of the x axis alone, with the y axis constant at y=0 (the opposite, having x=0 and the dose as a function
of y, yields exactly the same results due to symmetry), was plotted, which can be seen in Figure 3.1. The �gure
suggests a physical top-hat function. A report by Anthony A. Trovar, Ph. D. describes an approach to approximate
a top-hat as a sum of an odd number of Gaussians symmetrically placed around the maximum[6]. This seemed
ideal due to the fact that low order approximations, up to 3 or 5 Gaussians, have round edges where the maximum
starts to decay towards the minimum, just like the dose. More than 5 Gaussians cause the edge to become much
sharper, resembling every time more a step function and making it a worse approximation of the data.

This approach of approximating a top-hat also has the advantage that it can be generalized to 3D, by adding
3D Gaussians, which was precisely the next step. Nine and then twenty-�ve 3D Gaussians were initially used to
approximate the SD using the CFTOOL in Matlab (see Figure 3.2). However it was clear that this �t is not much
better at approximating the corners and is also signi�cantly worse at representing the central bulge than the OA.
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In an attempt to better approximate the fallout, a 3D parabola was added to the sets of Gaussians but it did not
signi�cantly improve the �t.

Figure 3.1: Central transverse pro�le (CTP) of Square Data (SD)

Figure 3.2: Twenty-�ve, 3D Gaussians added to approximate the Square Data (SD)

3.2 Picking Minimum of X and Y

Another approach that was contemplated was, instead of multiplying the two values of the x and y �ts, to choose
the minimum of the two values at the desired point. Since the two values do not get multiplied the zones with
the `double hit' would disappear. This approach maintains the versatility of the OA, while eradicating the zones
of major discrepancy. It is also straightforward to change the computer program. However, it turns out to be
undesirable because it modi�es the central bulge and the overall form of the �t by making it sharp, as can be seen
in Figure 3.3. Since it chooses between the two values it does not have smooth transitions where the x and y values
change relative magnitude, having discontinuities every time it happens. It also makes the values in the central
bulge bigger than the OA. It is necessary for a new algorithm to maintain the level of accuracy of the OA in the
central bulge since this is where the cancer is located, so it is important to precisely know the dose in this area.
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Figure 3.3: Picking minimum of x and y �t of Square Data (SD)

3.3 Gaussian Fallout

The other approach at �nding an appropriate �t was to be less radical. It is true that the OA is good at approxi-
mating the bulge and other parts of the actual data, so there was no necessity of starting anew. Instead, all that
was necessary was to �x the undesired `double hit' areas, while keeping the positive aspects of the OA. With this in
mind, the idea that arose was to create a �t for the fallout alone, while keeping all the other parts of the OA. This
idea not only serves as a procedural technique, but can also be rationally justi�ed. It is not entirely unreasonable
to think of the dose distribution as composed of a central bulge directly in front of the opening, and a general
background that decays as you move farther away from the beam.

Using the CFTOOL in Matlab, a Gaussian was �rst proposed to be a good candidate for approximating the
fallout. Several di�erent variations of Gaussians were used, trying di�erent widths, adding constants so and so on.
But, despite all those di�erent attempts, Gaussians are clearly not proper �ts. The major reason being the decay
characteristic of Gaussians since they reach a minimum value too quickly (see Figure 3.4). To try and �x this
problem a 3D parabola was combined with the Gaussians, but this did not improve the �t signi�cantly enough and
added the new problem that for large x and y the value becomes negative, implying negative doses.

Figure 3.4: Gaussian �t for fallout of Square Data (SD). The central transverse pro�le (CTP) is plotted, with the
solid line showing the Gaussian �t to the fallout, the black dots representing the data of the fallout and the red
marks all the other points not considered for the �t

7



4 Solution: Cauchy Fallout

The goal seemed to be to �nd a function that would decay similarly to a Gaussian but more gradually. A Cauchy
distribution was found to be a good candidate due to its gradual decay and adaptability to 3D. Even with the
�rst �t attempt it was obvious that the Cauchy distribution is much better than the Gaussian. After adjusting
di�erent parameters, a 3D Cauchy distribution was clearly the most viable option. The Cauchy distribution is able
to accurately describe the fallout (see Figure 4.1), so the next problem was to merge it with the OA.

Figure 4.1: 3D Cauchy fallout �t for Square Data (SD), where the black dots are the data and the red surface the
3D Cauchy

The �rst attempt was to switch between the OA and the Cauchy at a given radius away from the origin, so the
Cauchy would start after a circle centered at the origin. However, this causes big disparities in the values and it
is di�cult to pick a radius that keeps the central bulge while getting rid of all the `double hit' areas at the same
time. Another approach was to start it at a certain radius and also to transition between the OA and the Cauchy
with the angle, so that at the corners the �t would be dictated by the Cauchy and at the axis it would keep the
values computed by the OA. This does not signi�cantly improve the �t and also adds the problem that if a block
is placed in the opening, then the �t will still have areas of `double hit' since they do not necessarily happen in
the corner. Finally the solution was to change from the OA to the Cauchy after the data are 15% away from the
edge of the collimator. In order to minimize the discrepancies between the OA and the Cauchy when switching
between them, the transition was made continuous. This was achieved by adding an exponential dependence to
the transition between the two: the data start as completely coming from the OA calculations and exponentially
transition to the Cauchy so that within a small distance from the 15% mark from the collimator edge the Cauchy
completely dictates the �t.

The next step was to try and adapt the Cauchy �t to other collimators, and later to other depths. The CTP
(Central Transverse Pro�le) data for di�erent collimators were used to �nd a scalable adaptation to the Cauchy.
There were data sets for 6x6, 14x14, 10x10 and 20x20 collimators at z=10. The idea was to be able to scale the
Cauchy with a simple formula which could be easily added to the algorithm. After di�erent attempts a formula
was found to scale the Cauchy to properly adjust for the di�erent size collimators.

The next step was to �nd a way to adapt the Cauchy for di�erent depths. For this purpose CTP data sets of
a 10x10 collimator were used; there were data sets at z=2, 5, 10, 15, 20 and 30. In order to adjust for the depth
dependence two terms were added to the Cauchy in order to modify it. One was a constant term to multiply the
Cauchy, which makes it possible to increase or decrease the width of the Cauchy (how quickly it decays). The
other one was adding a constant, which would change the value the Cauchy decays to (so it shifts it up or down).
These two parameters were adjusted for each of the z values and plotted. Using Matlab's CFTOOL two equations
were found for these two terms. After applying them to the �t, it was necessary to check that all collimators were
accurately described by this depth dependence. In order to verify this the data from 4x4, 6x6, 14x14, 20x20 and
24x24 collimators, at the same depths as previously discussed for the 10x10, were used. Indeed it was found that the
�t follows the general trend of the data and is accurate at describing both the depth and collimator size dependence
of the data. The �nal Revised Algorithm (RA) �t for the 10x10 at z=10 can be seen in Figure 4.2.
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Figure 4.2: Piecewise �t of Revised Algorithm (RA) for Square Data (SD) generated by Matlab (MFRA)

The idea of the Equivalent Square (ESQEF) has to be explained in order to understand the implemented Cauchy
in the new �tting algorithm. The ESQEF in the computer program is the size of a side of a square that has the
same area as the collimator opening. In the special cases where the collimator aperture is a square then the ESQEF
is nothing but the length of the side. However, for other shapes (such as rectangles or irregular shapes created by
placing the steel blocks), the ESQEF is not as straightforward and the program has to calculate the area of this new
collimator con�guration in order to yield the ESQEF. With this in mind, the Cauchy in the proposed algorithm
has the following form:

Cauchy =
6.658 ∗ 10

ESQEF

1 + ( 10
ESQEF ∗ 0.8426 ∗ (X2 + Y 2))

+ 0.01279 (4.1)

In this equation Cauchy is the basic Cauchy distribution function used to describe the fallout of the x-y plane
of the data, the X and Y are the distances from the center of the collimator and the ESQEF is the Equivalent
Square previously described. The ESQEF in the equation serves as the scaling factor for collimators di�erent from
10x10. The rationale of using the ESQEF for scaling purposes is that the scattered radiation (which causes the
fallout in the graph) is caused by the area of the collimator aperture, more than the speci�c shape.

The algorithm to scale the Cauchy for di�erent depths is the following:

Dose Cauchy = Cauchy∗(0.1921∗(Z+6.29)0.9∗e−0.06373∗(Z+6.29))+(9.082×10−6∗Z2+2.243×10−4∗Z+0.01051)
(4.2)

In this equation Dose Cauchy denotes the Cauchy algorithm with the z dependence included, Cauchy again
the basic Cauchy distribution function for x-y plane of the data, and Z denotes the distance from the surface of the
water.

An equation of the following type is used transition between the OA and the Cauchy:

Dose = (Dose OA)∗e−10
√

(X−HWx∗1.15)2+(Y−HWy∗1.15)2+(Dose Cauchy)∗(1−e−10
√

(X−HWx∗1.15)2+(Y−HWy∗1.15)2)
(4.3)

In this equation Dose OA denotes the dose value computed from the Original Algorithm (OA), Dose Cauchy
again the Cauchy algorithm (with z dependence included), X and Y the distances from the center of the collimator,
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HW denotes the Half Width (HW), which is the distance from the center to the edge of the collimator and can be
di�erent for both the X and Y axis (therefore the subscripts), and Dose denotes the �nal algorithm that dictates
the dose values. This equation is only applied once either the x or the y distances are bigger than 1.15 times the
HW (in the respective axis).

5 Results

In order to properly understand the results of the new �tting algorithm, which we will denote as RA (Revised
Algorithm), an explanation of the data sets used to get the results is necessary. The OA and the RA were both
compared to 10x10 at z=10 data. There were three di�erent sets of data for this con�guration: two CTPs (denoted
as Data 1 and Data 2) as well as the SD previously described. The SD is signi�cant since it is the only 3D data set,
which makes it possible to directly compare the `double hit' areas. Because of this, the SD is necessary to interpret
the shape of the �ttings. However, in order to determine the exact dose there is a displacement factor that has to
be corrected in recorded data[7]. This correction was not included in the SD so the two CTPs prevail when trying
to determine the actual values of the data (since they do have the proper correction). Due to this inconsistency
when trying to determine the appropriateness of the �ts, several di�erent procedures were used in order to interpret
the results.

5.1 Qualitative

Di�erent graphs were used to qualitatively determine the correctness of the RA. For the 3D aspects of the graph
the following procedure was used. Using Matlab's CFTOOL a piecewise function is generated for the RA, denoted as
MFRA (Matlab Fit of Revised Algorithm). Then using this MFRA, the MFOA (Matlab Fit of Original Algorithm)
and the MFSD (Matlab Fit of Square Data) it is possible to plot the di�erence between the MFRA and MFSD, as
well as that of the MFOA and the MFSD, and also the absolute value of these di�erences. The plot of the absolute
di�erence between the MFOA and the MFSD can be seen in Figure 5.1, and the plot of the absolute di�erence
between the MFRA and the MFSD can be seen in Figure 5.2.

From these graphs some of the signi�cant aspects of the RA can be seen. As the graphs show, the RA leaves
the central bulge una�ected. As for the fallout, it can be noted that the RA maintains a pretty constant di�erence
with the SD, while the OA has the four corners of `double hit' where it largely di�ers from the data and cannot
be said to accurately describe it. These graphs o�er a visual representation of how the RA does a better job at
following the general shape of the data.

Another graph used to understand the accuracy of the RA is that of the Half Central Transverse Pro�les (or
HCTPs). The `half' denotes the fact that only half of the CTP is plotted: only the positive distances are taken into
account (since the data sets are symmetric this is su�cient). In a single graph the HCTPs of Data 1, Data 2, SD
and both the OA and RA are plotted. In this graph the y axis is the normalized dose and the x axis is the half-width
distance from the center of the collimator, that is, the distance from the center divided by half of the collimator
width (so divided by the HW), in this case 5cm (see Figure 5.3). This graph is fundamental to understand the
quantitative results that are going to be explained, as well as other bene�ts of the RA.

An important bene�t of the RA can be seen with these plots. Paying close attention to the OA and the data, it
can be seen that between 1 and 1.75 half-widths away from the center the OA has a signi�cantly lower value than
any of the data. This part is very important because in practice it would be an area of healthy tissue adjacent to
the cancerous tumor. This may be a patient's vital organ, so it is important to precisely know the amount of dose
given to this area when planning a treatment. In this part of the graph the RA does a better job at approximating
the dose of Data 1 and Data 2.

As for larger distances, the RA is also arguably better than the OA. Since Data 1 and Data 2 are to be given
priority in the actual value, a �t that does a better job at approximating these is better. The RA is not far from
either Data 1 or Data 2, making it much better since it is able to �nd a balance between the two. In practice
the actual value of the dose �uctuates from recording to recording, Data 1 and Data 2 being examples of this
�uctuation. It is therefore much better to have a �t that is between the two di�erent sets of data.
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Figure 5.1: Plot of the absolute di�erence between the Original Algorithm (OA) and Square Data (SD), generated
from the piecewise �ts (MFOA and MFSD)

Figure 5.2: Plot of the absolute di�erence between the Revised Algorithm (RA) and Square Data (SD), generated
from the piecewise �ts (MFRA and MFSD)
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Figure 5.3: Half center transverse pro�les (HCTPs) of 10x10 at z=10. The y axis represents the nomalized dose,
while the x axis represents the number of half-widths (half the width of the colimator) away from the center

5.2 Quantitative

The SD has a lower value in both the transition and fallout than the other recorded data. This makes the process
of determining a quantitative result much harder, since the SD o�ers information of the shape, but does not o�er
properly corrected values. Because of this, getting a quantitative result out of the SD alone would not re�ect the
full extent of the improvements, and neither would a quantitative result using Data 1 or Data 2 since they do not
o�er any information of the `double hit' areas or general 3D aspects of the measurement.

To get some sort of quantitative comparison between the OA and RA, Riemann sum approximations to 3D
integrals were used. The idea is that from the functions generated by CFTOOL in Matlab it is possible to get
approximate values for the data and the �ts, as well as their di�erences. By using a grid of 0.2 cm intervals it
is possible to approximate the integral of each of the graphs over a 32x32 cm area. Table 1 shows the values of
di�erent integrals. The error was computed by calculating the gradient on each of the axes for the given graph,
then adding the magnitude of the x and y gradients (since this gives an estimate of the magnitude of how much the
value can vary inside the 0.2x0.2 grid), and then calculating the Riemann sum of this absolute value (this can be
thought of as the next term in a Taylor expansion, which is a good estimate of the error assuming the higher terms
are small).

Graph Integral

Square Data (SD) (Figure 2.2) 164.8± 8.9
Original Algorithm (OA) (Figure 2.3) 147.3± 9.2
Revised Algorithm (RA) (Figure 4.2) 183.5± 8.7

Absolute Di�erence Between Square Data (SD) and Original Algorithm (OA) (Figure 5.1) 27.3± 4.4
Absolute Di�erence Between Square Data (SD) and Revised Algorithm (RA) (Figure 5.2) 21.1± 3.4

Table 1: Riemann sum approximations to integrals to quantitatively assess the di�erence between the Revised
Algorithm (RA) and the Original Algorithm (OA) compared to the Square Data (SD), over a 32x32 cm area

Table 1 shows that when compared to the SD, the RA is better than the OA. The value of the absolute di�erence
between the RA and SD is slightly smaller than that of the OA and SD, which re�ects the fact that in general the
RA is better at approximating the dose since it doesn't have the `double hit' areas. Also the integral of the RA
gives a higher value than that of the SD, while the OA gives a lower value. It is better to have a calculation that
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Figure 5.4: Half center data transverse pro�les (HCTPs) of 10x10 at z=10 with edited Square Data to match Data
2. The y axis represents the nomalized dose, while the x axis represents the number of half-widths (half the width
of the colimator) away from the center

overestimates the dose value than one that underestimates it since this prevents radiating healthy tissue more than
expected.

Also, the covariances between both the OA and RA with the SD were computed in order to have a quantitative
measure of shape relation between them (to see how well the �ts follow the general trend of the data). The covariance
between the OA and the SD is of 0.9943 ± 0.00005 and that between the RA and the SD is of 0.9977 ± 0.00005.
Even though both values are really high, this shows that the RA is indeed better than the OA.

To get a quantitative di�erence of the OA and RA with values that are closer to those of Data 2 (which would
show the highest di�erence of any of the recorded data) and that account for the displacement factor, the following
was done. First, using the HCTPs, the SD was changed to see if it could be modi�ed to have values closer to those
of Data 2. By adding a small amount and renormalizing it in order to account for the displacement factor, the
graph of the SD was found to closely follow Data 2 (see Figure 5.4), especially after 1 half-width, which is ideal
since the Cauchy starts after 1.15 half-widths. Using this knowledge, the entire SD was modi�ed. Then using this
edited SD (denoted as ESD), a similar table as the previous one was created (see Table 2).

Graph Integral

Edited Square Data (ESD) 190.2± 8.7
Original Algorithm (OA) 147.3± 9.2
Revised Algorithm (RA) 183.5± 8.7

Absolute Di�erence Between Edited Square Data (ESD) and Original Algorithm (OA) 47.9± 4.4
Absolute Di�erence Between Edited Square Data (ESD) and Revised Algorithm (RA) 11.8± 3.4

Table 2: Riemann sum approximations to integrals to quantitatively assess the di�erence between the Revised
Algorithm (RA) and the Original Algorithm (OA) compared to the Edited Square Data (ESD), over a 32x32 cm
area

From Table 2 it can be seen that the RA is much better than the OA. The absolute di�erence between the RA
and the ESD is signi�cantly smaller than that between the OA and the ESD. Also the RA integral is much closer
to that of the ESD, showing how it is a more appropriate approximation.
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6 Conclusion

Both the quantitative and qualitative results mentioned above reveal the Revised Algorithm (RA) as a better �tting
scheme than the Original Algorithm (OA). It is able to more closely approximate the fallout of the dose, improving
not only the `double hit' areas, but also other fundamental �aws of the OA. This RA will enable a more precise
approximation to the dose, which in turn makes it possible to create a better treatment plan for patients.

......................
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and collaborators, and Fermi National Laboratory for allowing this wonderful opportunity.
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