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Introduction 
 

The microwave kinetic inductance detector (MKID) is a new type of low-temperature astronomical detector. 
With the ability to record energies of individual photons at microsecond resolution, this detector is a great 
candidate for the next generation astronomical detector, especially for the use of studying dark energy. There 
has already been success in designing and comissioning a small 2024 pixel detector for astronomical 
observations (Figure 2). We present the results of the spectral resolution diagnostics of the MKID device at 
Fermilab. 

Mechanics of MKIDs 
 

Strengths of MKIDs 
 
•  Microsecond time resolution (many orders of magnitude better 

than charge-coupled devices) 
•  No read noise or dark current due to 100 mK operating 

temperature 
•  No loss of observation time due to data readout 
•  Ease of multiplexing in the resonant frequency domain 
•  Simultaneous collection of time resolution and spectroscopic data 

•  The MKID device at Fermilab is a 2024 pixel detector, where each pixel is a 
resonant circuit. 

•  The device is cooled to 100 mK using an adiabatic demagnetization 
refrigerator. 

•  When a photon hits the inductor (Figure 3), the resonant frequency of the 
pixel shifts. 

•  This, in turn, induces a phase shift in the microwave input signal. By 
measuring this shift, the energy of the photon is recorded. 

•  Each pixel in the array has a unique resonant frequency; therefore the pixels 
can be multiplexed on a single signal that can be quickly read out. 

•  The observational data for every pixel is stored in a file, which can later be 
used for analysis. 

PeakFinder 
 

Robust Python analysis package for spectrogram analysis: 
•  Plotting 
•  Fitting (various methods) 
•  Find resolution 
•  Find one sigma contribution of Gaussian 
•  Various veto parameters 
•  Intelligent parameter guessing 
•  Intelligent dead/bad pixel detection 

Local Oscillator Frequency 
 

•  The input microwave signal is combined with a local oscillator (LO) 
frequency during data collection. 

•  Under ideal conditions the pixels should behave identically in all 
LO frequencies, but preliminary inspection showed this was not 
true. 

•  400 nm light was observed for 120 seconds at LO frequencies 
from 2.7 to 3.1 GHz at 0.1 GHz intervals. 

•  At 2.9 GHz, the average resolution of the pixels was highest. 
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Further Research 
 

•  What causes the behavior of pixels in Sets 3 and 4 to be 
so poor? 

•  What factors determine the best LO frequency? 
•  Pixel behavior and quality when observing other 

wavelengths of light 
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Setup 
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Spectroscopy 
 

•  The observational data file contains lists of timestamps and phase 
shifts (Figure 5). 

•  A histogram of phase shifts results in a spectrogram (Figure 6). 
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Resolution Testing 
 

•  A Gaussian can be fit to the photon peak (Figure 6). 
•  Resolution = mean / FWHM 

•  Out of the 1012 pixels in feedline 1, about 25% behave well. 
•  Analysis was done by dividing pixels into four sets in resonant 

frequency domain. 
•  Sets 1 and 2 (2.5–3.9 GHz) contained most of the good pixels. 
•  Sets 3 and 4 (3.9–5.1 GHz) contained almost no usable pixels. 
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Optical Power 
 

To better characterize pixel behavior with regards to noise, one sigma 
contribution of Gaussian to fit was calculated. At one sigma to the 
right of the mean, what percentage of the fit is the Gaussian instead 
of the noise? 
•  Using the variable current lamp, 400 nm of light was observed for 

120 seconds at 0.1A intervals from 2 to 3A. 
•  Since lamp current is not linearly related to actual optical power, 

the one sigma contribution was plotted against photons observed 
per second. 

•  At approximately 150 photons per second, the pixel behavior 
“tops out.” This is believed to be due to the time between incident 
photons becoming too small, thus overlapping with the recovery 
time of the resonant frequency shift. 
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